1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
posledela
4 years ago
7

7. Simplify the following as much as possible. Simplify x/3 +x/4

Mathematics
2 answers:
Alla [95]4 years ago
7 0

Answer:

\frac{7x}{12}

Step-by-step explanation:

Before adding the fractions we require them to have a common denominator.

Multiply the numerator/ denominator of the first fraction by 4

Multiply the numerator/ denominator of the second fraction by 3

\frac{4x}{12} + \frac{3x}{12}

Now add the numerators leaving the denominator

= \frac{4x+3x}{12}

= \frac{7x}{12}

vovikov84 [41]4 years ago
7 0
I think 7/12x is the correct answer
You might be interested in
<img src="https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B8%7D" id="TexFormula1" title="\frac{5}{8}" alt="\frac{5}{8}" align="absmiddle
bija089 [108]

Answer:

\frac{5}{12}

Step-by-step explanation:

Multiply straight across and reduce.

\frac{5}{8} · \frac{2}{3} = \frac{10}{24} = \frac{5}{12}

6 0
3 years ago
List from least to greatest <br> 3.87 3 1/2 5
nexus9112 [7]
The least to greatest is 3 1/2, 3.87 and 5 since you need to use teh decimal placements to find out the answer.

4 0
4 years ago
Use the chart below to answer the questions:
MrRissso [65]

Answer:

Good question IM gonna come back and awnser this question dont worry this wont be the last of Me

Step-by-step explanation:

6 0
3 years ago
Following a major renovation, the monthly population of patrons visiting a theme park grew according to the model P=3,000(1.21)^
babymother [125]
P= 3000 (1.21)^t,  t= time in months

1 year = 12 months, and therefore, 1 month = 1/12 years

The equation showing yearly population growth changes to;

P=3000 (1.21)^t/12

The  correct answer is equation [1].
8 0
3 years ago
Uestion
Stella [2.4K]

Check the picture below, so the park looks more or less like so, with the paths in red, so let's find those midpoints.

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ J(\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad K(\stackrel{x_2}{1}~,~\stackrel{y_2}{3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 1 -3}{2}~~~ ,~~~ \cfrac{ 3 +1}{2} \right) \implies \left(\cfrac{ -2 }{2}~~~ ,~~~ \cfrac{ 4 }{2} \right)\implies JK=(-1~~,~~2) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ L(\stackrel{x_1}{5}~,~\stackrel{y_1}{-1})\qquad M(\stackrel{x_2}{-1}~,~\stackrel{y_2}{-3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -1 +5}{2}~~~ ,~~~ \cfrac{ -3 -1}{2} \right) \implies \left(\cfrac{ 4 }{2}~~~ ,~~~ \cfrac{ -4 }{2} \right)\implies LM=(2~~,~~-2) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{distance between 2 points} \\\\ JK(\stackrel{x_1}{-1}~,~\stackrel{y_1}{2})\qquad LM(\stackrel{x_2}{2}~,~\stackrel{y_2}{-2})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ JKLM=\sqrt{(~~2 - (-1)~~)^2 + (~~-2 - 2~~)^2} \\\\\\ JKLM=\sqrt{(2 +1)^2 + (-2 - 2)^2} \implies JKLM=\sqrt{( 3 )^2 + ( -4 )^2} \\\\\\ JKLM=\sqrt{ 9 + 16 } \implies JKLM=\sqrt{ 25 }\implies \boxed{JKLM=5}

now, let's check the other path, JM and KL

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ J(\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad M(\stackrel{x_2}{-1}~,~\stackrel{y_2}{-3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -1 -3}{2}~~~ ,~~~ \cfrac{ -3 +1}{2} \right) \implies \left(\cfrac{ -4 }{2}~~~ ,~~~ \cfrac{ -2 }{2} \right)\implies JM=(-2~~,~~-1) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ K(\stackrel{x_1}{1}~,~\stackrel{y_1}{3})\qquad L(\stackrel{x_2}{5}~,~\stackrel{y_2}{-1}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 5 +1}{2}~~~ ,~~~ \cfrac{ -1 +3}{2} \right) \implies \left(\cfrac{ 6 }{2}~~~ ,~~~ \cfrac{ 2 }{2} \right)\implies KL=(3~~,~~1) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{distance between 2 points} \\\\ JM(\stackrel{x_1}{-2}~,~\stackrel{y_1}{-1})\qquad KL(\stackrel{x_2}{3}~,~\stackrel{y_2}{1})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ JMKL=\sqrt{(~~3 - (-2)~~)^2 + (~~1 - (-1)~~)^2} \\\\\\ JMKL=\sqrt{(3 +2)^2 + (1 +1)^2} \implies JMKL=\sqrt{( 5 )^2 + ( 2 )^2} \\\\\\ JMKL=\sqrt{ 25 + 4 } \implies \boxed{JMKL=\sqrt{ 29 }}

so the red path will be  5~~ + ~~\sqrt{29} ~~ \approx ~~ \blacksquare~~ 10 ~~\blacksquare

3 0
2 years ago
Other questions:
  • What is the mean of the data set
    13·1 answer
  • What is the y-intercept of the graph of y=100(2)^x-5
    11·1 answer
  • Factorise 4a-6ab-18ac​
    15·1 answer
  • Write an algebraic expression to find the AREA of a rectangle with a length of 4x-5 and a width of 7.
    13·1 answer
  • Solve the exponential equations: 2^3x =11
    6·2 answers
  • I need help with this
    13·2 answers
  • Which of the following represents the set in words?<br> {x l x &gt; 0}
    11·1 answer
  • What is the volume of this pyramid
    15·1 answer
  • In ΔABC, \overline{AC} AC is extended through point C to point D, \text{m}\angle BCD = (9x-1)^{\circ}m∠BCD=(9x−1) ∘ , \text{m}\a
    14·1 answer
  • HELPPP ASASSASASASPPP
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!