Answer:
Part a)
Part b)
Explanation:
Part A)
As we know that time period of the motion is given as
so we have
now at the point of maximum amplitude the force equation when Normal force is about to zero is given as
so we have
Part b)
Now if the amplitude of the SHM is 6.23 cm
and now at this amplitude if object will lose the contact then in that case again we have
so now we have
Answer:
b. increasing the number of turns per unit length on the solenoid
e. increasing the current in the solenoid
Explanation:
As we know that energy density depends on the strength of the magnetic field. The magnetic field strength depends on the no of turns of the solenoid and the current passing through it. The greater the number of turns per unit length, greater the current passing through it, more stronger the magnetic field is. As
B = μ₀nI
n = no of turns
I = current through the wire
So the right options are
b. increasing the number of turns per unit length on the solenoid
e. increasing the current in the solenoid
Answer:
12N
Explanation:
Suppose the string mass is negligible, the total mass of the 2 block system is 6 + 9 = 15 kg
So the acceleration of the system when subjected to 30N force is
a = F / M = 30 / 15 = 2 m/s2
So both blocks would have the same acceleration, however, the force acting on the 6kg block would have a magnitude of
f = am = 2 * 6 = 12N
This is the tension in the string between the blocks
Answer:
B
Explanation:
Fermium is a synthetic element with the symbol Fm and atomic number 100. It is an actinide and the heaviest element that can be formed by neutron bombardment of lighter elements, and hence the last element that can be prepared in macroscopic quantities, although pure fermium metal has not yet been prepared.[3] A total of 19 isotopes are known, with 257Fm being the longest-lived with a half-life of 100.5 days.
It was discovered in the debris of the first hydrogen bomb explosion in 1952, and named after Enrico Fermi, one of the pioneers of nuclear physics. Its chemistry is typical for the late actinides, with a preponderance of the +3 oxidation state but also an accessible +2 oxidation state. Owing to the small amounts of produced fermium and all of its isotopes having relatively short half-lives, there are currently no uses for it outside basic scientific research.
a 1.25 kg block is attached to a spring with spring constant 17.0 n/m . while the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 46.0 cm/s .The amplitude of the subsequent oscillations 48.13 cm/s
a 1.25 kilogram block is fastened to a spring with a 17.0 newtons per meter spring constant. Given that K is equal to 14 Newtons per meter and mass equals 10.5 kg. The block is then struck with a hammer by a student while it is at rest, giving it a speedo of 46.0 cm for a brief period of time. The required energy provided by the hammer, which is half mv squared, is transformed into potential energy as a result of the succeeding oscillations. This is because we know that energy is still available for consultation. So access the amplitude here from here. He will therefore be equal to and by. Consequently, the Newton's spring constant is 14 and the value is 10.5. The velocity multiplied by 0.49
Speed at X equals 0.35 into amplitude, or vice versa. At this point, the spirit will equal half of K X 1 squared plus half. Due to the fact that this is the overall energy, square is equivalent to half of a K square or an angry square. amplitude is 13 and half case 14 x one is 0.35. calculate that is equal to initial velocities of 49 squares and masses of 10.5. This will be divided in half and start at about 10.5 into the 49-square-minus-14. 13.42 into the entire square in 20.35. dividing by 10.5 and taking the square as a result. 231 6.9 Six centimeters per square second. 10.5 into 49 sq. 14. 2 into a 13.42 square entire. then subtract 10.5 from the result to get the square. So that is 48.13cm/s.
To learn more about oscillations Please click on the given link:
brainly.com/question/26146375
#SPJ4
This is incomplete question Complete Question is:
a 1.25 kg block is attached to a spring with spring constant 17.0 n/m . while the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 46.0 cm/s . what are The amplitude of the subsequent oscillations?