1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harrizon [31]
2 years ago
9

PLEASE help me!!! ASAP!! Ill mark you as brainliest!!!!

Physics
1 answer:
MakcuM [25]2 years ago
8 0

Answer:

B

Explanation:

graph b shows a steady pace of movement for 20 minutes and then shows a plateau in the distance, showing that while time keeps moving (obviously), the distance doesn't change. then after 5 minutes, the student gets up and starts running again. hope this helped!

You might be interested in
Light rays from stars bend toward smaller angles as they enter Earth's atmosphere. a. Explain why this happens using Snell's law
Grace [21]

Answer:

Following are the answer to this question:

Explanation:

In option (a):

  • The principle of Snells informs us that as light travels from the less dense medium to a denser layer, like water to air or a thinner layer of the air to the thicker ones, it bent to usual — an abstract feature that would be on the surface of all objects. Mostly, on the contrary, glow shifts from a denser with a less dense medium. This angle between both the usual and the light conditions rays is referred to as the refractive angle.  
  • Throughout in scenario, the light from its stars in the upper orbit, the surface area of both the Earth tends to increase because as light flows from the outer atmosphere towards the Earth, it defined above, to a lesser angle.

In option (b):

  • Rays of light, that go directly down wouldn't bend, whilst also sun source which joins the upper orbit was reflected light from either a thicker distance and flex to the usual, following roughly the direction of the curve of the earth.  
  • Throughout the zenith specific position earlier in this thread, astronomical bodies appear throughout the right position while those close to a horizon seem to have been brightest than any of those close to the sky, and please find the attachment of the diagram.

8 0
3 years ago
Can someone help me?!!!!!
german
<h2>Hello!</h2>

The answer is:

The first option,  the walker traveled 360m more than the actual distance between the start and the end points.

Why?

Since each block is 180 m long, we need to calculate the vertical and the horizontal distance, in order to calculate how farther did the travel walk between the start and the end points (displacement).

So, calculating we have:

Traveler:

Distance=NorthCoveredDistance+EastCoveredDistance

Distance=4*180m+3*180m=720m+540m=1260m

Actual distance between the start and the end point (displacement):

ActualDistance=\sqrt{NorthDistance+EastDistance}\\\\ActualDistance=\sqrt{NorthDistance^{2} +EastDistance^{2}}\\\\ActualDistance=\sqrt{(720m)^{2} +(540m)^{2}}\\\\ActualDistance=\sqrt{518400m^{2} +291600m^{2}}\\\\ActualDistance=\sqrt{810000m^{2}}=900m

Now, to calculate how much farter did the traveler walk, we need to use the following equation:

DistanceDifference=WalkerCoveredDistance-ActualDistance\\\\DistanceDifference=1260m-900m=360m

Therefore, we have that distance differnce between the distance covered by the walker and the actual distance is 360m.

Hence, we have that the walker traveled 360m more than the actual distance between the start point and the end point.

Have a nice day!

3 0
3 years ago
A thin spherical spherical shell of radius R which carried a uniform surface charge density σ. Write an expression for the volum
ozzi

Answer:

Explanation:

From the given information:

We know that the thin spherical shell is on a uniform surface which implies that both the inside and outside the charge of the sphere are equal, Then

The volume charge distribution relates to the radial direction at r = R

∴

\rho (r) \  \alpha  \  \delta (r -R)

\rho (r) = k \  \delta (r -R) \ \  at \ \  (r = R)

\rho (r) = 0\ \ since \ r< R  \ \ or  \ \ r>R---- (1)

To find the constant k, we  examine the total charge Q which is:

Q = \int \rho (r) \ dV = \int \sigma \times dA

Q = \int \rho (r) \ dV = \sigma \times4 \pi R^2

∴

\int ^{2 \pi}_{0} \int ^{\pi}_{0} \int ^{R}_{0} \rho (r) r^2sin \theta  \ dr \ d\theta \ d\phi = \sigma \times 4 \pi R^2

\int^{2 \pi}_{0} d \phi* \int ^{\pi}_{0} \ sin \theta d \theta * \int ^{R}_{0} k \delta (r -R) * r^2dr = \sigma \times 4 \pi R^2

(2 \pi)(2) * \int ^{R}_{0} k \delta (r -R) * r^2dr = \sigma \times 4 \pi R^2

Thus;

k * 4 \pi  \int ^{R}_{0}  \delta (r -R) * r^2dr = \sigma \times  R^2

k * \int ^{R}_{0}  \delta (r -R)  r^2dr = \sigma \times  R^2

k * R^2= \sigma \times  R^2

k  =   R^2 --- (2)

Hence, from equation (1), if k = \sigma

\mathbf{\rho (r) = \delta* \delta (r -R)  \ \  at   \ \  (r=R)}

\mathbf{\rho (r) =0 \ \  at   \ \  rR}

To verify the units:

\mathbf{\rho (r) =\sigma \ *  \ \delta (r-R)}

↓         ↓            ↓

c/m³    c/m³  ×   1/m            

Thus, the units are verified.

The integrated charge Q

Q = \int \rho (r) \ dV \\ \\ Q = \int ^{2 \ \pi}_{0} \int ^{\pi}_{0} \int ^R_0 \rho (r) \ \ r^2 \ \  sin \theta  \ dr \ d\theta \  d \phi  \\ \\  Q = \int ^{2 \pi}_{0} \  d \phi  \int ^{\pi}_{0} \ sin \theta  \int ^R_{0} \rho (r) r^2 \ dr

Q = (2 \pi) (2) \int ^R_0 \sigma * \delta (r-R) r^2 \ dr

Q = 4 \pi  \sigma  \int ^R_0  * \delta (r-R) r^2 \ dr

Q = 4 \pi  \sigma  *R^2    since  ( \int ^{xo}_{0} (x -x_o) f(x) \ dx = f(x_o) )

\mathbf{Q = 4 \pi R^2  \sigma  }

6 0
3 years ago
A cosmic catastrophic event occurred that caused the tilt of the Earth's axis relative to its plane of orbit to increase from 23
Gnom [1K]

Answer: The elimination of seasonal variations

Explanation:

Since the cosmic catastrophic event which occurred led to the tilt of the Earth's axis relative to the plane of orbit to increase from 23.5° to 90°, the most obvious effect of this change would be the elimination of seasonal variations.

It should be noted that seasonal variation refers to the variation in a time series that's within a year which is repeated. The cause of seasonal variation can include rainfall, temperature, etc.

7 0
2 years ago
What are some actions that you can take to better manage your daily spending? How does daily spending contribute to successful m
bagirrra123 [75]
To manage your money better, you can spend your money wisely. If you spend your money on smart things, your money managemnet skills will improve.
7 0
3 years ago
Read 2 more answers
Other questions:
  • For line graphs and bar graphs, the values measured by the _____ axis depend on the values measured by the horizontal axis.
    9·1 answer
  • Is the desert hot or cold?
    7·2 answers
  • Which techniques can help reduce the effects of tornadoes?
    13·1 answer
  • Which of the following statements is true?
    12·1 answer
  • If a metal ball suspended by a rod is at rest, which force is responsible for balancing the force due to gravity?
    14·2 answers
  • Find the minimum thickness (in nm) of a soap bubble that appears green when illuminated by white light perpendicular to its surf
    14·1 answer
  • What acceleration is imparted to a football when the player kicked it with a force of 25 N? mass of football=0.40 kg
    11·1 answer
  • Net force = ?
    14·1 answer
  • the velocity of a body of mass 60kg reaches 15m/s from 0m/s in 12 second. calculate the kinetic energy and power of the body.​
    9·1 answer
  • What is the frequency of the fundamental mode of vibration of a steel piano wire stretched to a tension of 440 N? The wire is 0.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!