Answer:
Greater than
Explanation:
Here, angular momentum is conserved.

When the cloud shrinks under the right conditions, a star may be formed.
Thus, Diameter of clouds are much higher than a star.
Moment of inertia of cloud is greater than the star's inertial.
so, angular velocity of the star would be greater than angular velocity of the rotating gas.
Answer:
a) 145.6kgm^2
b) 158.4kg-m^2/s
c) 0.76rads/s
Explanation:
Complete qestion: a) the rotational inertia of the merry-go-round about its axis of rotation
(b) the magnitude of the angular momentum of the child, while running, about the axis of rotation of the merry-go-round and
(c) the angular speed of the merry-go-round and child after the child has jumped on.
a) From I = MK^2
I = (160Kg)(0.91m)^2
I = 145.6kgm^2
b) The magnitude of the angular momentum is given by:
L= r × p The raduis and momentum are perpendicular.
L = r × mc
L = (1.20m)(44.0kg)(3.0m/s)
L = 158.4kg-m^2/s
c) The total moment of inertia comprises of the merry- go - round and the child. the angular speed is given by:
L = Iw
158.4kgm^2/s = [145kgm^2 + ( 44.0kg)(1.20)^2]
w = 158.6/208.96
w = 0.76rad/s
<span>The tendency of an atom to pull electrons towards itself is referred to as its electronegativity. When it comes to chemical properties, electronegativity is use to describe the frequent behavior of atoms to attract shared pairs of electrons towards themselves.</span>