Answer:
a) x = 4.33 m
, b) w = 2 rad / s
, f = 0.318 Hz
, c) a = - 17.31 cm / s²,
d) T = 3.15 s, e) A = 5.0 cm
Explanation:
In this exercise on simple harmonic motion we are given the expression for motion
x = 5 cos (2t + π / 6)
they ask us for t = 0
a) the position of the particle
x = 5 cos (π / 6)
x = 4.33 m
remember angles are in radians
b) The general form of the equation is
x = A cos (w t + Ф)
when comparing the two equations
w = 2 rad / s
angular velocity and frequency are related
w = 2π f
f = w / 2π
f = 2 / 2pi
f = 0.318 Hz
c) the acceleration is defined by
a == d²x / dt²
a = - A w² cos (wt + Ф)
for t = 0
, we substitute
a = - 5,0 2² cos (π / 6)
a = - 17.31 cm / s²
d) El period is
T = 1/f
T= 1/0.318
T = 3.15 s
e) the amplitude
A = 5.0 cm
Answer
m/s rate of change of dispalcement per sec. ie velocity
m/s^2 is (m/s)/s ie rate of change of velocity per sec. ie accelerationplanation:
Answer:
Naruto is kinda strong
Explanation:
If were just talking about just him I think that he is strong for letting go of his past and moving along with his life. Bu t he also isn't strong if you think about it if Naruto didn't have the nine tails he wouldn't be special so he also is not strong there for his only power really comes from the nine tails.
Answer:
Magnitude of the force is

direction of the force is given as
West of South
Explanation:
As we know that force is a vector quantity and in order to find the resultant of two or more forces we need to add them vectorialy
So here we have

here we know that first force is of magnitude 2 N towards east

second force is also of 2.0 N due North

now from above equation


so magnitude of the force is given as


direction of the force is given as


West of South