Since 3 is greater than -3, hence (-1, 3) lie in the solution set. Option C is correct
In order to determine the points that lie in the solution set of the inequality y > 3x +10, we will substitute the x-coordinate and see if <u>y is greater than the result.</u>
<u />
For the coordinate point (1, 10)
y > 3(1) +10
y > 13
Since 10 is not greater than 13, hence (1,10) does not lie in the solution set.
For the coordinate point (4, 20)
y > 3(4) +10
y > 22
Since 20 is not greater than 22, hence (4,20) does not lie in the solution set.
For the coordinate point (-1, 3)
y > 3(-1) +10
y > -7
Since 3 is greater than -3, hence (-1, 3) lie in the solution set.
Learn more on inequality here: brainly.com/question/24372553
Answer:
Area covered by the fences will be 16.1 unit²
Step-by-step explanation:
Let the first parabola is represented by the function f(x) = 6x²
and second parabola by g(x) = x² + 9
point of intersection of the graphs will be determined when f(x) = g(x)
6x² = x² + 9
5x² = 9
x² = 1.8
x = ± 1.34
Now we will find the area between these curves drawn on the graph.
Area = ![\int_{-1.34}^{1.34}[f(x)-g(x)]dx=\int_{-1.34}^{1.34}[6x^{2}-(x^{2}+9)]dx](https://tex.z-dn.net/?f=%5Cint_%7B-1.34%7D%5E%7B1.34%7D%5Bf%28x%29-g%28x%29%5Ddx%3D%5Cint_%7B-1.34%7D%5E%7B1.34%7D%5B6x%5E%7B2%7D-%28x%5E%7B2%7D%2B9%29%5Ddx)
= 
= ![[\frac{5}{3}x^{3}-9x]_{-1.34}^{1.34}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B5%7D%7B3%7Dx%5E%7B3%7D-9x%5D_%7B-1.34%7D%5E%7B1.34%7D)
= ![[\frac{5}{3}(-1.34)^{3}-9(-1.34)-\frac{5}{3}(1.34)^{3}+9(1.34)]](https://tex.z-dn.net/?f=%5B%5Cfrac%7B5%7D%7B3%7D%28-1.34%29%5E%7B3%7D-9%28-1.34%29-%5Cfrac%7B5%7D%7B3%7D%281.34%29%5E%7B3%7D%2B9%281.34%29%5D)
= ![[-4.01+12.06-4.01+12.06]](https://tex.z-dn.net/?f=%5B-4.01%2B12.06-4.01%2B12.06%5D)
= 16.1 unit²
He will have a fourth of a cup raisins left over<span />
Step 1 , switch sides - 29-3b<10
step 2 , subtract 29 from both sides - -3b< -19
step 3 , multiply both sides by -1 - 3b > 19
step 4 (answer) - divide by 3 = 19/3
<u>Given</u><u> </u><u>Information</u><u> </u><u>:</u><u>-</u>
⠀
- A polygon with 10 sides ( Decagon )
⠀
<u>To</u><u> </u><u>Find</u><u> </u><u>:</u><u>-</u>
⠀
- The value of one of the exterior angles
⠀
<u>Formula</u><u> </u><u>Used</u><u> </u><u>:</u><u>-</u>
⠀

⠀
<u>Solution</u><u> </u><u>:</u><u>-</u>
⠀
Putting the given values, we get,
⠀

Thus, the value of the exterior angles of a Decagon is 36°.
⠀
