1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bingel [31]
4 years ago
15

What characteristics of venus's atmosphere make the planet so harsh

Physics
1 answer:
navik [9.2K]4 years ago
6 0
This is what google says :)

You might be interested in
A 5.00μF parallel-plate capacitor is connected to a 12.0 V battery. After the capacitor is fully charged, the battery is disconn
EastWind [94]

(a) 12.0 V

In this problem, the capacitor is connected to the 12.0 V, until it is fully charged. Considering the capacity of the capacitor, C=5.00 \mu F, the charged stored on the capacitor at the end of the process is

Q=CV=(5.00 \mu F)(12.0 V)=60 \mu C

When the battery is disconnected, the charge on the capacitor remains unchanged. But the capacitance, C, also remains unchanged, since it only depends on the properties of the capacitor (area and distance between the plates), which do not change. Therefore, given the relationship

V=\frac{Q}{C}

and since neither Q nor C change, the voltage V remains the same, 12.0 V.

(b) (i) 24.0 V

In this case, the plate separation is doubled. Let's remind the formula for the capacitance of a parallel-plate capacitor:

C=\frac{\epsilon_0 \epsilon_r A}{d}

where:

\epsilon_0 is the permittivity of free space

\epsilon_r is the relative permittivity of the material inside the capacitor

A is the area of the plates

d is the separation between the plates

As we said, in this case the plate separation is doubled: d'=2d. This means that the capacitance is halved: C'=\frac{C}{2}. The new voltage across the plate is given by

V'=\frac{Q}{C'}

and since Q (the charge) does not change (the capacitor is now isolated, so the charge cannot flow anywhere), the new voltage is

V'=\frac{Q}{C'}=\frac{Q}{C/2}=2 \frac{Q}{C}=2V

So, the new voltage is

V'=2 (12.0 V)=24.0 V

(c) (ii) 3.0 V

The area of each plate of the capacitor is given by:

A=\pi r^2

where r is the radius of the plate. In this case, the radius is doubled: r'=2r. Therefore, the new area will be

A'=\pi (2r)^2 = 4 \pi r^2 = 4A

While the separation between the plate was unchanged (d); so, the new capacitance will be

C'=\frac{\epsilon_0 \epsilon_r A'}{d}=4\frac{\epsilon_0 \epsilon_r A}{d}=4C

So, the capacitance has increased by a factor 4; therefore, the new voltage is

V'=\frac{Q}{C'}=\frac{Q}{4C}=\frac{1}{4} \frac{Q}{C}=\frac{V}{4}

which means

V'=\frac{12.0 V}{4}=3.0 V

3 0
3 years ago
What is the moment of inertia of an object that rolls without slipping down a 3.5-m- high incline starting from rest, and has a
Daniel [21]

Answer:

I = 0.287 MR²

Explanation:

given,

height of the object = 3.5 m

initial velocity = 0 m/s

final velocity  = 7.3 m/s

moment of inertia = ?

Using total conservation of mechanical energy

change in potential energy will be equal to change in KE (rotational) and KE(transnational)

PE = KE(transnational) + KE (rotational)

mgh = \dfrac{1}{2}mv^2 + \dfrac{1}{2}I\omega^2

v = r ω

mgh = \dfrac{1}{2}mv^2 + \dfrac{1}{2}\dfrac{Iv^2}{r^2}

I = \dfrac{m(2gh - v^2)r^2}{v^2}

I = \dfrac{mr^2(2\times 9.8 \times 3.5 - 7.3^2)}{7.3^2}

I =mr^2(0.287)

I = 0.287 MR²

3 0
3 years ago
A water rocket uses an amount of water and pressurized air to send a plastic rocket several feet into the air. As the water and
Ilya [14]

Answer:

D.

For every action there is an equal and opposite reaction.

Explanation:

im doing the same one lol

6 0
3 years ago
A submerged submarine is stationary. The engines are put on maximum power. The submarine moves forward. The engines maintain max
densk [106]
This is EXACTLY the same scenario as the skydiver jumping
out of the airplane, except the whole thing is turned on its side.

==> The skydiver leaves the airplane.
The force of gravity on him (his weight) makes him accelerate down.
But the air resists his downward motion.
The faster he falls, the more UPWARD force the air exerts on him.
The more upward force the air exerts, the less he accelerates down.
When his falling speed is great enough, he stops accelerating, and
falls with a constant speed.  He calls that speed his 'terminal velocity'. 

==> The submarine turns on its engines, at maximum power.
The force of the engines makes the sub accelerate forward. 
But the water resists its forward motion.
The faster it moves, the more BACKWARD force the water exerts on it.
The more backward force the water exerts, the less it accelerates forward.
When the forward speed is great enough, it stops accelerating, and moves
with a constant speed.  I don't know if they use the same term in submarines,
but you might say that speed is the 'terminal velocity' in water. 
3 0
3 years ago
A 1000kg ar accelerates from rest to 25.0m/s in 4.20
bezimeni [28]

Answer:

74.4 kilowatts or 99.8 horsepower

Explanation:

The explanation is in the attachment.

7 0
3 years ago
Other questions:
  • Distribution intensity is commonly divided into three levels:
    12·2 answers
  • Identify the action/reaction force pair involved when you catch a ball?
    13·1 answer
  • Compare the energy consumption of two commonly used items in the household. Calculate the energy used by a 1.40 kW toaster oven,
    7·1 answer
  • John was color-blind. Because of this affliction, he landed an important job. What was it? Please help!!
    13·1 answer
  • Mountain ranges that form close to a subduction zone are likely to experience 
    13·2 answers
  • All circuits must have three things: energy source, wire, and a generator
    11·1 answer
  • You put a diode in a microelectronic circuit to protect the system in case an untrained person installs the battery backward. In
    8·1 answer
  • The proability of breaking the branch of a tree is more as we move to the top. Why? ​
    11·1 answer
  • How do you make a magnetic field stronger?
    7·2 answers
  • Why is it important to warm up the mess in before a workout
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!