1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa86 [58]
3 years ago
14

16.

Physics
2 answers:
Fed [463]3 years ago
6 0
B! Assume you are lifting weights... you are squatting 100 pounds, then you go to 200 pounds. The force of the mass/weight thus double Bc it is twice as hard to push it up!!

Hope this helps
Ilia_Sergeevich [38]3 years ago
4 0

Answer:

B

Explanation:

I made a mistake, I am so sorry. The correct option is B. Since the mass is held constant, as the force increases the acceleration increases too. Thanks

You might be interested in
a 300kg motorboat is turned off as it approaches a dock and coasts towards it at .5 m/s. Isaac, whose mass is 62 kg jumps off th
Zolol [24]

-- Before he jumps, the mass of (Isaac + boat) = (300 + 62) = 362 kg,
their speed toward the dock is 0.5 m/s, and their linear momentum is

  Momentum = (mass) x (speed) = (362kg x 0.5m/s) = <u>181 kg-m/s</u>

<u>relative to the dock</u>. So this is the frame in which we'll need to conserve
momentum after his dramatic leap.

After the jump:

-- Just as Isaac is coiling his muscles and psyching himself up for the jump,
he's still moving at 0.5 m/s toward the dock.  A split second later, he has left
the boat, and is flying through the air at a speed of 3 m/s relative to the boat.
That's 3.5 m/s relative to the dock.

    His momentum relative to the dock is (62 x 3.5) = 217 kg-m/s toward it.

But there was only 181 kg-m/s total momentum before the jump, and Isaac
took away 217 of it in the direction of the dock.  The boat must now provide
(217 - 181) = 36 kg-m/s of momentum in the opposite direction, in order to
keep the total momentum constant.

Without Isaac, the boat's mass is 300 kg, so 

                     (300 x speed) = 36 kg-m/s .

Divide each side by 300:  speed = 36/300 = <em>0.12 m/s ,</em> <u>away</u> from the dock.
=======================================

Another way to do it . . . maybe easier . . . in the frame of the boat.

In the frame of the boat, before the jump, Isaac is not moving, so
nobody and nothing has any momentum.  The total momentum of
the boat-centered frame is zero, which needs to be conserved.

Isaac jumps out at 3 m/s, giving himself (62 x 3) = 186 kg-m/s of
momentum in the direction <u>toward</u> the dock.

Since 186 kg-m/s in that direction suddenly appeared out of nowhere,
there must be 186 kg-m/s in the other direction too, in order to keep
the total momentum zero.

In the frame of measurements from the boat, the boat itself must start
moving in the direction opposite Isaac's jump, at just the right speed 
so that its momentum in that direction is 186 kg-m/s.
The mass of the boat is 300 kg so
                                                         (300 x speed) = 186

Divide each side by 300:  speed = 186/300 = <em>0.62 m/s</em>    <u>away</u> from the jump.

Is this the same answer as I got when I was in the frame of the dock ?
I'm glad you asked. It sure doesn't look like it.

The boat is moving 0.62 m/s away from the jump-off point, and away from
the dock.
To somebody standing on the dock, the whole boat, with its intrepid passenger
and its frame of reference, were initially moving toward the dock at 0.5 m/s.
Start moving backwards away from <u>that</u> at 0.62 m/s, and the person standing
on the dock sees you start to move away <u>from him</u> at 0.12 m/s, and <em><u>that's</u></em> the
same answer that I got earlier, in the frame of reference tied to the dock.

  yay !

By the way ... thanks for the 6 points.  The warm cloudy water
and crusty green bread are delicious.


4 0
3 years ago
An athlete kicks a soccer ball that starts at rest so that it leaves their foot with a speed of 10m/s from the top o f a rectang
kirza4 [7]

Answer:

a=500m/s^2

Explanation:

We need only to apply the definition of acceleration, which is:

a=\frac{v_f-v_i}{t_f-t_i}

In our case the final velocity is v_f=10m/s, the initial velocity is v_i=0m/s since it departs from rest, the final time is t_f=0.02s and the initial time we are considering is t_i=0s

So for our values we have:

a=\frac{10m/s-0m/s}{0.02s-0s}=500m/s^2

3 0
3 years ago
A billiard ball is moving in the x-direction at 30.0 cm/s and strikes another billiard ball moving in the y-direction at 40.0 cm
____ [38]

Answer:

53.13 °

Explanation:

In order to do this, we just need to apply the following:

tanα = Dy/Dx

Where:

Vy: speed of the ball in the y axis.

Vx: speed of the ball in the x axis.

At this point we do not need the speed of the first ball after the collision because in that moment is already heading in the direction that we are looking for. Therefore, we just need to use the innitial data to calculate the direction which the first ball will go.

According to this, then:

tanα = (40/30)

tanα = 1.3333

α = tan⁻¹(1.3333)

<h2>α = 53.13°</h2>

This means that the final direction of the first ball is 53.13° and in the x axis because the starting momentum of this ball in the x axis has not dissapeared.

Hope this helps

6 0
3 years ago
if the current in a wire is 2.0 amperes and the potential difference across the wire is 10 volts what is the resistance of the w
Pavlova-9 [17]

Answer:

R = 2Ω

Explanation:

Potential difference (V) = current (I) * Resistance (R)

V = IR

I = 2.0A

V = 10v

R = ?

V = IR

R = V / I

R = 10 / 2

R = 2Ω

The resistance across the wire is 2Ω

3 0
3 years ago
Read 2 more answers
How far can a person run in 15 minutes if he runs at an average speed of 16 km/hr?
anygoal [31]

Answer:

4km

Explanation:

15 minutes is 1/4 of an hour.

1/4 of 16 is 4.

3 0
3 years ago
Other questions:
  • PLZ!!!!!HURRY WILL BE FRIEND FOREVER!!!
    6·1 answer
  • Need help with these please
    11·2 answers
  • Stored energy and the energy of positions are ________________ energy
    9·1 answer
  • Instead, suppose that it was fired upward at 60◦ with respect to a horizontal line. Then its horizontal component of velocity is
    10·1 answer
  • In order to be considered an ion, an atom must have a
    12·1 answer
  • How large amount of energy is produced during the fission of uranium ​
    15·1 answer
  • 1 point<br> How much force is needed to accelerate an 84-kg boulder at a rate of 6.4<br> m/s/s? *
    12·1 answer
  • Running with an initial velocity of +11 m/s, a horse has an average acceleration of -1.8
    14·1 answer
  • Compare the events in the life of the Sun with those of a star that starts with less
    15·1 answer
  • An electron traveling at a velocity v enters a uniform magnetic field B. Initially, the velocity and field are perpendicular to
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!