1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavlova-9 [17]
3 years ago
11

Lorene's employer pays her $8.50 per hour plus an additional $45 per week. Lorene would like to earn enough money to purchase a

stereo system that cost $300. write and solve an inequality that represents the number of hours, h , that lorene can work this week in order to be able to purchase the stereo.
Mathematics
1 answer:
Tamiku [17]3 years ago
3 0

Answer:

8.50h + 45 (greater than or equal to) 300

You might be interested in
What is x equal to ?????????
Hitman42 [59]

Answer:

x is 6

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Please help will mark brainliest if correct
Annette [7]

Answer:

umm

Step-by-step explanation:

u fogot to send the pic

7 0
3 years ago
Solve by elementation
lana66690 [7]
I don't understand can you show have to do this pleas
8 0
3 years ago
Read 2 more answers
Round 25.789 to the nearest tenth
Akimi4 [234]

Answer:----------->

25.8


8 0
3 years ago
Read 2 more answers
In Exercises 11-18, use analytic methods to find the extreme values of the function on the interval and where they occur. Identi
Colt1911 [192]

Answer:

Absolute maximum of 1 at x = pi/4 ; (\frac{\pi}{4}, \ 1)

Absolute minimum of -1 at x = 5pi/4 ; (\frac{5\pi}{4} , \ -1)

Local maximum of √2/2 at x = 0 ; (0, \ \frac{\sqrt{2} }{2} )

Local minimum of 0 at x = 7pi/4 ; (\frac{7\pi}{4}, \ 0)

No critical points that are not stationary points.

Step-by-step explanation:

f(x)=sin(x+\frac{\pi}{4} ), \ 0 \leq x\leq \frac{7 \pi}{4}

<h2>Take Derivative of f(x):</h2>

Let's start by taking the derivative of the function.

Use the power rule and the chain rule to take the derivative of f(x).

  • f'(x)=\frac{d}{dx}  [sin(x+\frac{\pi}{4})] \times \frac{d}{dx}  (x+\frac{\pi}{4})

The derivative of sin(x) is cos(x), so we can write this as:

  • f'(x)=cos(x+\frac{\pi}{4})\times \frac{d}{dx}  (x+\frac{\pi}{4})

Now, we can apply the power rule to x + pi/4.

  • f'(x)=cos(x+\frac{\pi}{4} ) \times 1
  • f'(x)=cos(x+\frac{\pi}{4} )
<h2>Critical Points: Set f'(x) = 0</h2>

Now that we have the first derivative of f(x)=sin(x+\frac{\pi}{4}), let's set the first derivative to 0 to find the critical points of this function.

  • 0=cos(x+\frac{\pi}{4})

Take the inverse cosine of both sides of the equation.

  • cos^-^1(0) = cos^-^1[cos(x+\frac{\pi}{4})]

Inverse cosine and cosine cancel out, leaving us with x + pi/4. The inverse cosine of 0 is equal to 90 degrees, which is the same as pi/2.

  • \frac{\pi}{2} = x +\frac{\pi}{4}

Solve for x to find the critical points of f(x). Subtract pi/4 from both sides of the equation, and move x to the left using the symmetric property of equality.

  • x=\frac{\pi}{2}- \frac{\pi}{4}
  • x=\frac{2 \pi}{4}-\frac{\pi}{4}
  • x=\frac{\pi}{4}

Since we are given the domain of the function, let's use the period of sin to find our other critical point: 5pi/4. This is equivalent to pi/4. Therefore, our critical points are:

  • \frac{\pi}{4}, \frac{5 \pi}{4}  
<h2>Sign Chart(?):</h2>

Since this is a sine graph, we don't need to create a sign chart to check if the critical values are, in fact, extreme values since there are many absolute maximums and absolute minimums on the sine graph.

There will always be either an absolute maximum or an absolute minimum at the critical values where the first derivative is equal to 0, because this is where the sine graph curves and forms these.

Therefore, we can plug the critical values into the original function f(x) in order to find the value at which these extreme values occur. We also need to plug in the endpoints of the function, which are the domain restrictions.

Let's plug in the critical point values and endpoint values into the function f(x) to find where the extreme values occur on the graph of this function.

<h2>Critical Point Values:</h2>
  • f(\frac{\pi}{4} )=sin(\frac{\pi}{4} + \frac{\pi}{4} ) \\ f(\frac{\pi}{4} )=sin(\frac{2\pi}{4}) \\ f(\frac{\pi}{4} )=sin(\frac{\pi}{2}) \\ f(\frac{\pi}{4} )=1

There is a maximum value of 1 at x = pi/4.

  • f(\frac{5\pi}{4} )=sin(\frac{5\pi}{4} + \frac{\pi}{4} ) \\ f(\frac{5\pi}{4} )=sin(\frac{6\pi}{4}) \\ f(\frac{5\pi}{4}) = sin(\frac{3\pi}{2}) \\ f(\frac{5\pi}{4} )=-1

There is a minimum value of -1 at x = 5pi/4.

<h2>Endpoint Values:</h2>
  • f(0) = sin((0) + \frac{\pi}{4}) \\ f(0) = sin(\frac{\pi}{4}) \\ f(0) = \frac{\sqrt{2} }{2}

There is a maximum value of √2/2 at x = 0.

  • f(\frac{7\pi}{4} ) =sin(\frac{7\pi}{4} +\frac{\pi}{4}) \\  f(\frac{7\pi}{4} ) =sin(\frac{8\pi}{4}) \\ f(\frac{7\pi}{4} ) =sin(2\pi) \\ f(\frac{7\pi}{4} ) =0

There is a minimum value of 0 at x = 7pi/4.

We need to first compare the critical point values and then compare the endpoint values to determine whether they are maximum or minimums.

<h2>Stationary Points:</h2>

A critical point is called a stationary point if f'(x) = 0.

Since f'(x) is zero at both of the critical points, there are no critical points that are not stationary points.  

6 0
3 years ago
Other questions:
  • What is 200 millimetres equal to in centre meters?
    10·2 answers
  • There are 4 red marbles and 8 blue marbles in a bag. Jamie will randomly pick one marble and flip a coin. what is the probabilit
    15·1 answer
  • What is 14 2/3 as an improper fraction?
    14·2 answers
  • 9(a-2)+15=33 solve variable. include steps, also check your answer!
    7·2 answers
  • Marcie solved the following inequality, and her work is shown below:
    9·1 answer
  • A square has an area of 122 square feet how long is each side to the nearest 0.05
    13·1 answer
  • Turn this percent into a decimal: 45%
    8·2 answers
  • Find the area of the rhombus
    5·2 answers
  • FIRST CORRECT ANSWER GETS BRAINLIEST ​
    7·2 answers
  • Brian watches 2 dogs for a week. He has a 126 ounces of dog food. Does Brian have enough food for a week?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!