A plane mirror always forms a virtual image. the image and the object are the same distance from a flat mirror, the image size is the same as the object, and the image is upright!
The gravitational force between <em>m₁</em> and <em>m₂</em> has magnitude

while the gravitational force between <em>m₁</em> and <em>m₃</em> has magnitude

where <em>x</em> is measured in m.
The mass <em>m₁</em> is attracted to <em>m₂</em> in one direction, and attracted to <em>m₃</em> in the opposite direction such that <em>m₁</em> in equilibrium. So by Newton's second law, we have

Solve for <em>x</em> :

The solution with the negative square root is negative, so we throw it out. The other is the one we want,

<span>Heat is radiated, atmospheric moisture condenses at a rate greater than that at which it can evaporate, resulting in the formation of water droplets.</span>
Answer:
a) P = 44850 N
b) 
Explanation:
Given:
Cross-section area of the specimen, A = 130 mm² = 0.00013 m²
stress, σ = 345 MPa = 345 × 10⁶ Pa
Modulus of elasticity, E = 103 GPa = 103 × 10⁹ Pa
Initial length, L = 76 mm = 0.076 m
a) The stress is given as:

on substituting the values, we get

or
Load, P = 44850 N
Hence<u> the maximum load that can be applied is 44850 N = 44.85 KN</u>
b)The deformation (
) due to an axial load is given as:

on substituting the values, we get

or
