Answer:
Fx = 35.36 N
Fy = 35.36 N
Explanation:
From the question,
The X component of the force is
Fx = Fcos∅.................. Equation 1
Where Fx = X component of the force, F = Force, ∅ = Angle to the horizontal.
Give: F = 50 N, ∅ = 45°
Substitute into equation 1
Fx = 50(cos45°)
Fx = 50(0.7071)
Fx = 35.36 N
Similarly,
For Y component
Fy = Fsin∅
Where F y = Y component
Fy = 50(sin45°)
Fy = 50(0.7071)
Fy = 35.36 N
Correct answer choice is:
D. A continuous transmission of energy from one location to the next.
Explanation:
Waves include the carrier of energy without the carrier of matter. In outcome, a wave can be characterized as a change that progresses into a medium, carrying energy from one spot (its source) to different spot without carrying matter.
Answer:
First of all the formula is F= uR,( force= static friction× reaction)
mass= 5+25=30
F= 50
R= mg(30×10)=300
u= ?
F=UR
u= F/R
u= 50/300=0.17N
Answer:
r = 3.787 10¹¹ m
Explanation:
We can solve this exercise using Newton's second law, where force is the force of universal attraction and centripetal acceleration
F = ma
G m M / r² = m a
The centripetal acceleration is given by
a = v² / r
For the case of an orbit the speed circulates (velocity module is constant), let's use the relationship
v = d / t
The distance traveled Esla orbits, in a circle the distance is
d = 2 π r
Time in time to complete the orbit, called period
v = 2π r / T
Let's replace
G m M / r² = m a
G M / r² = (2π r / T)² / r
G M / r² = 4π² r / T²
G M T² = 4π² r3
r = ∛ (G M T² / 4π²)
Let's reduce the magnitudes to the SI system
T = 3.27 and (365 d / 1 y) (24 h / 1 day) (3600s / 1h)
T = 1.03 10⁸ s
Let's calculate
r = ∛[6.67 10⁻¹¹ 3.03 10³⁰ (1.03 10⁸) 2) / 4π²2]
r = ∛ (21.44 10³⁵ / 39.478)
r = ∛(0.0543087 10 36)
r = 0.3787 10¹² m
r = 3.787 10¹¹ m