Answer with Step-by-step explanation:
We are given that A, B and C are subsets of universal set U.
We have to prove that

Proof:
Let x
Then
and 
When
then
but 
Therefore,
but 
Hence, it is true.
Conversely , Let
but 
Then
and
When
then 
Therefor,
Hence, the statement is true.
Answer:
a) 504
b) 56
c) 0.111
Step-by-step explanation:
Data provided in the question:
There are nine golf balls numbered from 1 to 9 in a bag
Three balls are randomly selected without replacement
a) 3-digit numbers that can be formed
= 
n = 9
r = 3
= ⁹P₃
= 
= 9 × 8 × 7
= 504
b) 3-digit numbers start with the digit 1
= _ _ _
in the above 3 blanks first digit is fixed i.e 1
we and we have 8 choices left for the last 2 digits
Thus,
n = 8
r = 2
Therefore,
= 1 × ⁸P₂
= 1 × 
= 1 × 8 × 7
= 56
c) Probability that the 3-digit number formed is less than 200
Now,
The number of 3-digit number formed is less than 200 will be the 3-digit numbers start with the digit 1 i.e part b)
and total 3-digit numbers that can be formed is part a)
therefore,
Probability that the 3-digit number formed is less than 200
= 56 ÷ 504
= 0.111
Area of Shaded triangle as a whole: 136cm^2
Area of Rectangle 1 : 20cm^2
Area of Rectangle 2 : 6cm ^ 2
Area of the shaded region :
136 - (20+6)
136 - (26)
110 cm^2
Answer:
(-9,-7)
Step-by-step explanation:
(x,y)—>(-x,-y)
(9,7)—>(-(9),-(7))=(-9,-7)