Answer:
E
Step-by-step explanation:
using the rule of radicals
×
⇔
, hence
=
=
×
×
[
= i]
= 2i
→ E
Answer:
probability that the other side is colored black if the upper side of the chosen card is colored red = 1/3
Step-by-step explanation:
First of all;
Let B1 be the event that the card with two red sides is selected
Let B2 be the event that the
card with two black sides is selected
Let B3 be the event that the card with one red side and one black side is
selected
Let A be the event that the upper side of the selected card (when put down on the ground)
is red.
Now, from the question;
P(B3) = ⅓
P(A|B3) = ½
P(B1) = ⅓
P(A|B1) = 1
P(B2) = ⅓
P(A|B2)) = 0
(P(B3) = ⅓
P(A|B3) = ½
Now, we want to find the probability that the other side is colored black if the upper side of the chosen card is colored red. This probability is; P(B3|A). Thus, from the Bayes’ formula, it follows that;
P(B3|A) = [P(B3)•P(A|B3)]/[(P(B1)•P(A|B1)) + (P(B2)•P(A|B2)) + (P(B3)•P(A|B3))]
Thus;
P(B3|A) = [⅓×½]/[(⅓×1) + (⅓•0) + (⅓×½)]
P(B3|A) = (1/6)/(⅓ + 0 + 1/6)
P(B3|A) = (1/6)/(1/2)
P(B3|A) = 1/3
I think it’s the red line.
So you want to put the equation into y=mx+b so you would need to subtract the x to put it on the right side so then you’ll have 2y=-x+0 then divide by 2 to get the y by itself then you’ll have y=-2x+0 that means the line would be negative and the y intercept is 0 and the only line that follows that is the red line.
Hope this helped :)