Answer:
36 ft
Step-by-step explanation:
The pole's shadow is 6 times the length of the man's shadow, so the pole is 6 times as high as the man.
6 × 5'11" = 30'66" = 35'6" ≈ 36 ft
Answer:
(-2, -5)
(-1, -2)
(0, 1)
(1, 4)
(2, 7)
Step-by-step explanation:
Substitute x with each number and solve equation.
Answer: 12.3
Step-by-step explanation: It's 12.3 because the other 3 is in the hundredths place and the rule says 5 or more round,4 or less stays the same
Answer:
The two iterations of f(x) = 1.5598
Step-by-step explanation:
If we apply Newton's iterations method, we get a new guess of a zero of a function, f(x), xₙ₊₁, using a previous guess of, xₙ.
xₙ₊₁ = xₙ - f(xₙ) / f'(xₙ)
Given;
f(xₙ) = cos x, then f'(xₙ) = - sin x
cos x / - sin x = -cot x
substitute in "-cot x" into the equation
xₙ₊₁ = xₙ - (- cot x)
xₙ₊₁ = xₙ + cot x
x₁ = 0.7
first iteration
x₂ = 0.7 + cot (0.7)
x₂ = 0.7 + 1.18724
x₂ = 1.88724
second iteration
x₃ = 1.88724 + cot (1.88724)
x₃ = 1.88724 - 0.32744
x₃ = 1.5598
To four decimal places = 1.5598
<em>Solid transformation</em> is a <u>method</u> that requires a change in the <u>length </u>of sides of a given shape or a change in its <em>orientation</em>. Thus the required <u>answers</u> are:
i. Yes, line <em>segment</em> AB is <em>the same</em> as line <u>segment </u>CD.
ii. This implies that <u>translation</u> does not affect the<u> length </u>of a given<u> line,</u> but there is a change in its <em>location</em>.
<em>Solid transformation</em> is a <u>method</u> that requires a change in the <u>length </u>of sides of a given shape or a change in its <em>orientation</em>. Some types of <em>transformation</em> are reflection, translation, dilation, and rotation.
- <u>Dilation</u> is a method that requires either <u>increasing</u> or <u>decreasing</u> the <em>size</em> of a given <u>shape</u>.
- <u>Translation</u> is a process that involves moving <em>every point </em>on the <u>shape</u> in the same <u>direction</u>, and the same <u>unit</u>.
- <u>Reflection</u> is a method that requires <em>flipping</em> a given <u>shape</u> over a given reference<u> point</u> or<u> line.</u>
- <em>Rotation</em> requires <u>turning</u> a given <em>shape</em> at an <u>angle</u> about a given reference <u>point</u>.
Thus in the given question, <u>translation</u> would not affect the <u>length</u> of <em>line</em> <em>segment</em> AB, thus <em>line segment</em> AB and CD are the same. Also, A <u>translated</u> <em>line segment</em> would have the same <u>length</u> as its object, but at another <u>location</u>.
For more clarifications on translation of a plane shape, visit: brainly.com/question/21185707
#SPJ1