The ladder and the wall it leans on are illustrations of right triangle
The horizontal distance from the base of the ladder is 5.41 feet
<h3>How to determine the horizontal distance?</h3>
The given parameters are:
Length (L) = 26 feet
Angle of elevation (θ) = 78 degrees
The horizontal distance (D) is calculated using the following cosine ratio
cos(θ) = D/L
Substitute known values
cos(78) = D/26
Make D the subject
D = 26 * cos(78)
Multiply
D = 5.41
Hence, the horizontal distance from the base of the ladder is 5.41 feet
Read more about right triangles at:
brainly.com/question/2437195
Thus L.H.S = R.H.S that is 2/√3cosx + sinx = sec(Π/6-x) is proved
We have to prove that
2/√3cosx + sinx = sec(Π/6-x)
To prove this we will solve the right-hand side of the equation which is
R.H.S = sec(Π/6-x)
= 1/cos(Π/6-x)
[As secƟ = 1/cosƟ)
= 1/[cos Π/6cosx + sin Π/6sinx]
[As cos (X-Y) = cosXcosY + sinXsinY , which is a trigonometry identity where X = Π/6 and Y = x]
= 1/[√3/2cosx + 1/2sinx]
= 1/(√3cosx + sinx]/2
= 2/√3cosx + sinx
R.H.S = L.H.S
Hence 2/√3cosx + sinx = sec(Π/6-x) is proved
Learn more about trigonometry here : brainly.com/question/7331447
#SPJ9
The sound wave with a <u>frequency of 20</u> waves/sec is 800 longer than the wavelength of a sound wave with a <u>frequency of 16,000</u> waves/sec
<h3>Calculating wavelength </h3>
From the question, we are to determine how many times longer is the first sound wave compared to the second sound water
Using the formula,
v = fλ
∴ λ = v/f
Where v is the velocity
f is the frequency
and λ is the wavelength
For the first wave
f = 20 waves/sec
Then,
λ₁ = v/20
For the second wave
f = 16,000 waves/sec
λ₂ = v/16000
Then,
The factor by which the first sound wave is longer than the second sound wave is
λ₁/ λ₂ = (v/20) ÷( v/16000)
= (v/20) × 16000/v)
= 16000/20
= 800
Hence, the sound wave with a <u>frequency of 20</u> waves/sec is 800 longer than the wavelength of a sound wave with a <u>frequency of 16,000</u> waves/sec
Learn more on Calculating wavelength here: brainly.com/question/16396485
#SPJ1