Diagram is on the picture below.
Answer is: 1).
Sodium chloride is ionic compound and in the water dissociate in sodium cation (positive charge) and chloride anion (negative charge). Water is polar compound, oxagan has negative charge and hydrogen charge. Positive interact witn negative charge and negative with positive charge.
Answer:
Isotopes, protons, netrons
Explanation:
Alkali metals. Hope this helps
Answer:
The solution to the question is as follows
(a) The rate of ammonia formation = 0.061 M/s
(b) the rate of N₂ consumption = 0.0303 M/s
Explanation:
(a) To solve the question we note that the reaction consists of one mole of N₂ combining with three moles of H₂ to form 2 moles of NH₃
N₂(g) + 3H₂(g) → 2NH₃(g)
The rate of reaction of molecular hydrogen = 0.091 M/s, hence we have
3 moles of H₂ reacts to form 2 moles of NH₃, therefore
0.091 M of H₂ will react to form 2/3 × 0.091 M or 0.061 M of NH₃
Hence the rate of ammonia formation is 0.061 M/s
(b) From the reaction equation we have 3 moles of H₂ and one mole of N₂ being consumed at the same time hence
0.091 M of H₂ is consumed simultaneously with 1/3 × 0.091 M or 0.0303 M of N₂
Therefore the rate of consumption of N₂ = 0.0303 M/s
Answer:
See explanation
Explanation:
Let us look at the reaction again;
Cr2O7 2- (aq) + H2O(l)⇄ 2CrO4 2-(aq) + 2H^+(aq)
When we add sodium hydroxide to the system as shown, the hydroxide ion removes the hydrogen ion thereby leaving a large concentration CrO4^2-(aq) in the system this causes the solution to turn green(equilibrium position shifts to the right).
The net ionic equation is;
OH^-(aq) + H^+(aq) ----> H2O(l)
The reaction;
OH^-(aq) + H^+(aq) ----> H2O(l) is exothermic hence, if the temperature of the system is increased, the equilibrium position will shift towards the left hand side and the solution turns orange.