1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dedylja [7]
3 years ago
5

Can you explain it and help me out please​

Mathematics
1 answer:
shusha [124]3 years ago
4 0

Answer:

D. two real solutions

Step-by-step explanation:

p²+5 = 6p

p² - 6p +5 =0

D = b² - 4ac = (-6)² - 4*(1)*5 = 36 - 20 = 16

D > 0, so this equation has 2 real solutions

You might be interested in
Name two linear expression whose difference is 5x-4
slava [35]
We can have:

(10x - 2) - (5x + 2)

Or:

(7x + 3) - (2x + 7)
3 0
3 years ago
Read 2 more answers
The positive integer k has exactly two positive prime factors, 3 and 7. if k has a total of 6 positive factors, including 1 and
Sav [38]
I think there are two solutions, 63 or 147:

63 = 3² x 7, factors  1 | 3 | 7 | 9 | 21 | 63<span>
147 = 3 x 7</span>², factors 1 | 3 | 7 | 21 | 49 | 147
5 0
3 years ago
Please help and explain how you got the answer I'm really bad at these
irina1246 [14]
The range of the data is C. 160 because the biggest number, 280, subtracted by the smallest number, 120, is equal to 160.
6 0
2 years ago
Read 2 more answers
Help this is due in 10 minutes please help
Assoli18 [71]

Answer: acute angle, straight line

Step-by-step explanation:

6 0
2 years ago
Solve the triangle. Round your answers to the nearest tenth. A. m∠A=43, m∠B=55, a=16 B. m∠A=48, m∠B=50, a=23 C. m∠A=48, m∠B=50,
alexgriva [62]

Answer:

D. m∠A=43, m∠B=55, a=20

Step-by-step explanation:

Given:

∆ABC,

m<C = 82°

AB = c = 29

AC = b = 24

Required:

m<A, m<C, and a (BC)

SOLUTION:

Find m<B using the law of sines:

\frac{sin(B)}{b} = \frac{sin(C)}{c}

\frac{sin(B)}{24} = \frac{sin(82)}{29}

sin(B)*29 = sin(82)*24

\frac{sin(B)*29}{29} = \frac{sin(82)*24}{29}

sin(B) = \frac{sin(82)*24}{29}

sin(B) = 0.8195

B = sin^{-1}(0.8195)

B = 55.0

m<B = 55°

Find m<A:

m<A = 180 - (82 + 55) => sum of angles in a triangle.

= 180 - 137

m<A = 43°

Find a using the law of sines:

\frac{a}{sin(A)} = \frac{b}{sin(B)}

\frac{a}{sin(43)43} = \frac{24}{sin(55)}

Cross multiply

a*sin(55) = 25*sin(43)

a = \frac{25*sin(43)}{sin(53)}

a = 20 (approximated)

8 0
3 years ago
Other questions:
  • Emily and Hunter tracked the average temperature in their city for the past 8 days. They recorded their temperature findings in
    15·1 answer
  • Khloe's car used 8 gallons of gas to drive 272 miles. At what rate does her car use gas in gallons per mile? Express your answer
    10·1 answer
  • If AC = 18 and CD = 5, AD = [?]<br> 8<br> Enter
    7·1 answer
  • Answer to part A and B for Question 5?
    14·1 answer
  • Which fraction is greater 17/30 and 27/35
    9·2 answers
  • What is the number of solutions for 6 - 4r + 4r = 7
    14·2 answers
  • Colin paid $3.38 for frozen yogurt, which weighed 8 " # ounces. What is the unit cost (dollars per ounce)?
    9·2 answers
  • Use the Pythagorean theorem to find the distance between (-5,2) and (10,10)​
    12·2 answers
  • True or false: A rotation is a type of transformation in which each point of a pre-image is moved along a circular path centered
    9·1 answer
  • the graph of g was translated down 10 units to create the graph of function h. which statement comparing the graphs of g and h i
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!