The earths gravity attracts the molecules and collects the most near the surface. They all have weight and therefore have more pressure at the surface, as well. As you go higher, the attraction becomes less and these molecules some times fly off into space. This layer of equilibrium has the least of weight or pressure.
The various pressures are measured by precision instruments called barometers or pressure sensors and expressed in inches of mercury or millibars. <span>Air has a weight too, although not very much, If you "pile" the air mile high, the bottom pressure is heavier because of all the air sitting on top of it, therefore the pressure decreases with altitude, because there is less air "piled up" </span>
<span>An analogy would be the same with water.</span>
Planes have these instruments that tells the crew the altitude above sea level they are at when flying.
Answer:
0.55 mol Au₂S₃
Explanation:
Normally, we would need a balanced equation with masses, moles, and molar masses, but we can get by with a partial equation, if the S atoms are balanced.
1. Gather all the information in one place:
M_r: 34.08
Au₂S₃ + … ⟶ 3H₂S + …
m/g: 56
2. Calculate the moles of H₂S
Moles of H₂S = 56 g H₂S × (34.08 g H₂S/1 mol H₂S)
= 1.64 mol H₂S
3. Calculate the moles of Au₂S₃
The molar ratio is 1 mol Au₂S₃/3 mol H₂S.
Moles of Au₂S₃ = 1.64 mol H₂S × (1 mol Au₂S₃/3 mol H₂S)
= 0.55 mol Au₂S₃
It’s either the first or second one
I think it’s the first one - the outer cells of the blastocyst
Answer:
The second transformation is a rotation around (point) L.
Explanation:
Generally, a rigid transformation is used to change only the position of a figure while the shape remains the same. In order to map a triangle (ΔJKL) to another triangle (ΔMNQ), two rigid transformations were employed. In the first transformation, the vertex L was mapped to the vertex Q. Therefore, the second transformation will definitely involve the rotation around (point) L. This will complete the two rigid transformations.
+5
Explanation:
The given radical is PO₄³⁻
To solve this problem, we need to understand what oxidation number entails.
The extent of the oxidation of each atom is expressed by the oxidation number.
Here are some rules for assigning them:
- Elements in an uncombined state or elements that combines with one another, their oxidation number is zero.
- The charge on an ion is its oxidation number
- In an neutral compound, algebraic sum of all the oxidation numbers of all atoms is zero.
- In a radical, the algebraic sum of all the oxidation numbers of the ions is equal to the charge on them.
Oxygen is known to have an oxidation number of -2;
PO₄³⁻
P + 4(-2) = -3
P -8 = -3
P = -3 + 8 = +5
The charge on phosphorus is +5
learn more:
Oxidation number brainly.com/question/2086855
#learnwithbrainly