Step-by-step explanation:
Hey there!
The given points are; (2,2) and (5,y).
Slope (m) =2
<u>Usi</u><u>ng</u><u> formula</u><u> for</u><u> </u><u>slope</u><u>,</u><u> </u><u>we</u><u> </u><u>get</u><u>;</u>
<u>
</u>
<u>Pu</u><u>t</u><u> all</u><u> </u><u>v</u><u>alues</u><u>.</u>
<u>
</u>
<u>Simpl</u><u>ify</u><u> </u><u>it</u><u> </u><u>to</u><u> </u><u>get</u><u> </u><u>valu</u><u>e</u><u> of</u><u>"</u><u>y</u><u>"</u><u>.</u>
<u>
</u>
<u>
</u>
<u>
</u>
<u>Therefore</u><u>,</u><u> </u><u>y</u><u>=</u><u> </u><u>8</u><u>.</u>
<em><u>Hop</u></em><em><u>e</u></em><em><u> it</u></em><em><u> helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
<h3>
Answer: 51 square inches</h3>
=======================================================
Explanation:
There are a few ways to do this. One way is to divide the figure as shown in the diagram below. I divided it into a rectangle and a triangle. Find the area of the rectangle and triangle, then add up those areas to get the final answer.
A = area of rectangle
A = length*width
A = 7*6
A = 42
B = area of triangle
B = 0.5*base*height
B = 0.5*(6-3)*(13-7)
B = 0.5*3*6
B = 1.5*6
B = 9
C = total area
C = A+B
C = 42+9
C = 51 square inches
Answer:
19. 11
21. 119
Step-by-step explanation:
19.
(-5)² - [4(-3 ∙ 2 + 4)² + 3] + 5 =
= (-5)² - [4(-6 + 4)² + 3] + 5
= (-5)² - [4(-2)² + 3] + 5
= (-5)² - [4(4) + 3] + 5
= (-5)² - [16 + 3] + 5
= 25 - 19 + 5
= 6 + 5
= 11
21.
5 - 8[6 - (3 ∙ 2 - 8 + 2|4 ÷ -2 + (-3)| - 4) - 7 · 2] - 3² · (-2) =
= 5 - 8[6 - (3 ∙ 2 - 8 + 2|-2 + (-3)| - 4) - 7 · 2] - 3² · (-2)
= 5 - 8[6 - (3 ∙ 2 - 8 + 2|-5| - 4) - 7 · 2] - 3² · (-2)
= 5 - 8[6 - (3 ∙ 2 - 8 + 2(5) - 4) - 7 · 2] - 3² · (-2)
= 5 - 8[6 - (6 - 8 + 10 - 4) - 7 · 2] - 3² · (-2)
= 5 - 8[6 - (-2 + 10 - 4) - 7 · 2] - 3² · (-2)
= 5 - 8[6 - (8 - 4) - 7 · 2] - 3² · (-2)
= 5 - 8[6 - 4 - 7 · 2] - 3² · (-2)
= 5 - 8[6 - 4 - 14] - 3² · (-2)
= 5 - 8[2 - 14] - 3² · (-2)
= 5 - 8[-12] - 3² · (-2)
= 5 - (-96) - 9 · (-2)
= 5 + 96 + 18
= 101 + 18
= 119
Answer:
94.50$
Step-by-step explanation:
Answer:
answer is 3 and ratio of two different numbers