Answer:
x^2 + 4x * (3 - sqrt(x)) - 2(5 + sqrt(x))
Step-by-step explanation:
Firstly let us split this up, we need to first work out what g(h(x)) is:
h(x) = Sqrt(x) so g(h(x)) = g(sqrt(x)) = sqrt(x) - 2
Now to work out f(g(h(x))) = f(sqrt(x) - 2) = (sqrt(x) - 2)^4 + 6
= (sqrt(x) - 2) * (sqrt(x) - 2) * (sqrt(x) - 2) * (sqrt(x) - 2) - 6
= (x - 2 * sqrt(x) + 4) * (x - 2 * sqrt(x) + 4) - 6
= x^2 - 2x * sqrt(x) + 4x - 2x * sqrt(x) + 4x - 8 * sqrt(x) + 4x - 8 * sqrt(x) + 16 - 6
= x^2 - 4x * sqrt(x) + 12x - 16 * sqrt(x) + 10
= x^2 + 4x * (3 - sqrt(x)) - 2(5 + sqrt(x))
Answer:
it's 3/50
Step-by-step explanation:
Answer: Yes, Raoul is correct because the initial value, also known as the y-intercept of function A is 0 and function B is 3.
Step-by-step explanation: The initial value is when x=0.
Answer:
3n^2+9+5n^4+55n
Step-by-step explanation:
Steps
$\left(3n^2+9+5n^4-3n\right)+\left(-9n\left(-7\right)-5n\right)$
$\mathrm{Remove\:parentheses}:\quad\left(a\right)=a,\:-\left(-a\right)=a$
$=3n^2+9+5n^4-3n+9n\cdot\:7-5n$
$\mathrm{Add\:similar\:elements:}\:-3n-5n=-8n$
$=3n^2+9+5n^4-8n+9\cdot\:7n$
$\mathrm{Multiply\:the\:numbers:}\:9\cdot\:7=63$
$=3n^2+9+5n^4-8n+63n$
$\mathrm{Add\:similar\:elements:}\:-8n+63n=55n$
$=3n^2+9+5n^4+55n$
Answer:
square root of,10,end square root is between 2.52.52,point,5and333