Sector area = (central angle / 360) * PI * radius^2
sector area = (210 / 360) * PI * 2.3^2
sector area = (7 / 12) * PI * 5.29
<span><span><span>sector area = 9.6944313302
</span>
</span>
</span>
<span>sector area = 9.7 square meters (rounded)
Source:
http://www.1728.org/radians.htm
</span>
Answer:
Number of points, x, Number of segments, y
x: 2, 3, 4, 5, ... N,. ...
y: 1, 3, 6, 10, ... (N-1)(N)/2, ...
Step-by-step explanation:
Adding Nth point, there are N-1 new segments,
and (sum over {i = 1 to N-1} of i) total segments. As Gauss knew when he was c.10 yo, the sum is (N-1)(N)/2.
Answer:
y = -cos(x) -2
Step-by-step explanation:
Multiplying the function value by -1 reflects it across the x-axis. Adding -2 to the function value shifts it down by two units.
reflected: y = -cos(x)
then shifted: y = -cos(x) -2
*Given
Money of Phoebe - 3 times as much as Andy
Money of Andy - 2 times as much as Polly
Total money of Phoebe, - £270
Andy and Polly
*Solution
Let
B - Phoebe's money
A - Andy's money
L - Polly's money
1. The money of the Phoebe, Andy, and Polly, when added together would total £270. Thus,
B + A + L = £270 (EQUATION 1)
2. Phoebe has three times as much money as Andy and this is expressed as
B = 3A
3. Andy has twice as much money as Polly and this is expressed as
A = 2L (EQUATION 2)
4. This means that Phoebe has ____ as much money as Polly,
B = 3A
B = 3 x (2L)
B = 6L (EQUATION 3)
This step allows us to eliminate the variables B and A in EQUATION 1 by expressing the equation in terms of Polly's money only.
5. Substituting B with 6L, and A with 2L, EQUATION 1 becomes,
6L + 2L + L = £270
9L = £270
L = £30
So, Polly has £30.
6. Substituting L into EQUATIONS 2 and 3 would give us the values for Andy's money and Phoebe's money, respectively.
A = 2L
A = 2(£30)
A = £60
Andy has £60
B = 6L
B = 6(£30)
B = £180
Phoebe has £180
Therefore, Polly's money is £30, Andy's is £60, and Phoebe's is £180.
Answer:
Im pretty sure its the top right sqaure.
Step-by-step explanation: