Answer:
474.64mmHg
Explanation:
From the question given, we obtained the following:
V1 = 10L
P1 = 655mmHg
V2 = 13.8L
P2 =?
P1V1 = P2V2
10 x 655 = P2 x 13.8
Divide both side by the coefficient P2 i.e 13.8
P2 = (10 x 655) / 13.8
P2 = 474.64mmHg
Therefore, the new pressure will be 474.64mmHg
<span>The relative strength of intermolecular forces such as ionic, hydrogen bonding, dipole-dipole interaction and Vander Waals dispersion force affects the boiling point of a compound. For this case, the longer the chain the higher the boiling point.
</span>CH, CH4, C4H10, C8H18, C16H34
Hope this answers the question. Have a nice day.
Glycolysis--The breakdown of a glucose molecule into two three-carbon pieces called pyruvate. You will notice that very little ATP is produced in this step and no oxygen is required. ... This step is also where other molecules besides glucose may be fed into the cell respiration<span> process, especially lipids.</span>
Explanation:
Let us assume that total mass of the solution is 100 g. And, as it is given that acetic acid solution is 12% by mass which means that mass of acetic acid is 12 g and 88 g is the water.
Now, calculate the number of moles of acetic acid as its molar mass is 60 g/mol.
No. of moles =
= 
= 0.2 mol
Molarity of acetic acid is calculated as follows.
Density = 
1 g/ml = 
volume = 100 ml
Hence, molarity = 
= 
= 2 mol/l
As reaction equation for the given reaction is as follows.

So, moles of NaOH = moles of acetic acid
Let us suppose that moles of NaOH are "x".
(as 1 L = 1000 ml)
x = 20 L
Thus, we can conclude that volume of NaOH required is 20 ml.