Long-term potentiation (LTP) is considered a cellular correlate of learning and memory. The presence of G protein-activated inwardly rectifying K(+) (GIRK) channels near excitatory synapses on dendritic spines suggests their possible involvement in synaptic plasticity. However, whether activity-dependent regulation of channels affects excitatory synaptic plasticity is unknown. In a companion article we have reported activity-dependent regulation of GIRK channel density in cultured hippocampal neurons that requires activity oF receptors (NMDAR) and protein phosphatase-1 (PP1) and takes place within 15 min. In this study, we performed whole-cell recordings of cultured hippocampal neurons and found that NMDAR activation increases basal GIRK current and GIRK channel activation mediated by adenosine A(1) receptors, but not GABA(B) receptors. Given the similar involvement of NMDARs, adenosine receptors, and PP1 in depotentiation of LTP caused by low-frequency stimulation that immediately follows LTP-inducing high-frequency stimulation, we wondered whether NMDAR-induced increase in GIRK channel surface density and current may contribute to the molecular mechanisms underlying this specific depotentiation. Remarkably, GIRK2 null mutation or GIRK channel blockade abolishes depotentiation of LTP, demonstrating that GIRK channels are critical for depotentiation, one form of excitatory synaptic plasticity.
Learn more about receptors here:
brainly.com/question/11985070
#SPJ4
Large molecules such as hormones materials are expelled from cells during exocytosis
<u>Explanation:</u>
The materials inside the cells are transferred to the outside of the cell and this manner is termed as Exocytosis. This method is termed as a kind of active transport since it needs energy for this transformation process. One of the major purposes of this process is to discharge trash matters like hormones and proteins.
For a cell to cell transmission and chemical signal messaging these methods are essential. Proteins that are newly generated are transferred to the peak of the plasma membrane by exocytosis. There are three general pathways of exocytosis.
Homeostasis:
<em>The tendency towards a relatively stable equilibrium between interdependent elements, especially as maintained by physiological processes</em>
The main function of the respiratory system is to allow the exchange of gases between the atmosphere and the lungs.
Hence,the only structure that carries out this function is the alveoli as other structures such as the nose,trachea and pharynx transport gases to the alveoli just so that it can can out its function.
Answer:
yea it should be B
Explanation:
because the problems and or deformity in the blood cell prevents blood from carrying oxygen properly