Answer:
Step-by-step explanation:
13) x⁴-12x² +36
(a-b)² = a²-2ab+b²
a = x² ; b = 6
(x²)² - 2 * x² * 6 + 6² = (x² - 6)²
14) w⁴- 14w² - 32 = w⁴+ 2w² - 16w² - 32 = w² (w² + 2) - 16 (w²+2)
= (w² + 2) (w² -16 )
15) k³ + 7k² - 44k = k ( k² + 7k -44) = k ( k+11 ) ( k-4 )
16) 2a³ +28a²+96a =2a(a²+14a+48) = 2a(a+6)(a+8)
17) -x³ +4x² +21x = (-x) ( x² - 4x - 21) = (-x)(x-7)(x+3)
18) m⁶ - 7m⁴ -18m² = m² ( m⁴-7m²-18) = m² (m²-9)(m²+9)
= m² (m+1) (m-1)(m²+9)
19) 9y⁶ +6y⁴ + y²= y² ( 9y⁴+6y²+1) = y² (3y²+1)²
20) 8c⁴+10c² -3 = (4c +1)(2c-3)
Answer:
-0.394875
Step-by-step explanation:
(9/16)*(-3/4)
9/16=.5265
-3/4=-.75
.5265*(-.75)=-0.394875
Answer:
Step-by-step explanation:
1) (x-3),(x-8)
2) 3x^3+3x^2=27x
3
(
x
3^3+
x
^2
−
9
x
−
9
)
3
(
x
^2
(
x
+
1
)
−
9
(
x
+
1
)
)
3
(
(
x
+
1)(
x
^2
−
9
)
)
3
(
(
x
+
1
)
(
x
^2
−
3
^2
)
)
3
(
x
+
1
)
(
x
+
3
)
(
x
−
3
)
Answer:
An equation in point-slope form of the line that passes through (-4,1) and (4,3) will be:

Step-by-step explanation:
Given the points
Finding the slope between the points (-4,1) and (4,3)



Refine

Point slope form:

where
- m is the slope of the line
in our case,
substituting the values m = 1/4 and the point (-4,1) in the point slope form of line equation.



Thus, an equation in point-slope form of the line that passes through (-4,1) and (4,3) will be:
