Answer:
45,54,63
Step-by-step explanation:
The multiples of 9 are
9,19,27,36,45,54,63,72,81
The three multiples are 36 are
45,54,63
Answer:
Tn = 64-4n
Step-by-step explanation:
The nth term of an AP is expressed as:
Tn = a+(n-1)d
a is the common difference
n is the number of terms
d is the common difference
Given the 6th term a6 = 40
T6 = a+(6-1)d
T6 = a+5d
40 = a+5d ... (1)
Given the 20th term a20 = -16
T20 = a+(20-1)d
T20 = a+19d
-16 = a+19d... (2)
Solving both equation simultaneously
40 = a+5d
-16 = a+19d
Subtracting both equation
40-(-16) = 5d-19d
56 = -14d
d = 56/-14
d = -4
Substituting d = -4 into equation
a+5d = 40
a+5(-4) = 40
a-20 = 40
a = 20+40
a = 60
Given a = 60, d = -4, to get the nth term of the sequence:
Tn = a+(n-1)d
Tn = 60+(n-1)(-4)
Tn = 60+(-4n+4)
Tn = 60-4n+4
Tn = 64-4n
Answer:
x = -5, and y = -6
Step-by-step explanation:
Suppose that we have two equations:
A = B
and
C = D
combining the equations means that we will do:
First we multiply both whole equations by constants:
k*(A = B) ---> k*A = k*B
j*(C = D) ----> j*C = j*D
And then we "add" them:
k*A + j*C = k*B + j*D
Now we have the equations:
-x - y = 11
4*x - 5*y = 10
We want to add them in a given form that one of the variables cancels, so we can solve it for the other variable.
Then we can take the first equation:
-x - y = 11
and multiply both sides by 4.
4*(-x - y = 11)
Then we get:
4*(-x - y) = 4*11
-4*x - 4*y = 44
Now we have the two equations:
-4*x - 4*y = 44
4*x - 5*y = 10
(here we can think that we multiplied the second equation by 1, then we have k = 4, and j = 1)
If we add them, we get:
(-4*x - 4*y) + (4*x - 5*y) = 10 + 44
-4*x - 4*y + 4*x - 5*y = 54
-9*y = 54
So we combined the equations and now ended with an equation that is really easy to solve for y.
y = 54/-9 = -6
Now that we know the value of y, we can simply replace it in one of the two equations to get the value of x.
-x - y = 11
-x - (-6) = 11
-x + 6 = 11
-x = 11 -6 = 5
-x = 5
x = -5
Then:
x = -5, and y = -6