1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solmaris [256]
3 years ago
15

your automobile insurance semiannual premium is 750 and you have 1050 deductible per incident. In a particularly bad year, you h

ad two collisions. The total repair costs were 2700 and 1400. What was your out of pocket expenses?
Mathematics
1 answer:
nataly862011 [7]3 years ago
6 0

Answer:

  $3600

Step-by-step explanation:

In each case, the repair cost exceeded the deductible, so your out-of-pocket cost for 2 repairs is ...

  2 × $1050 = $2100

In addition, you had to pay the premium of $750 per 6-month period, or $1500 per year, so your total was ...

  $2100 +1500 = $3600 . . . out-of-pocket total

You might be interested in
A guy wire 30 ft long supports an antenna at a point that is 24 ft above the base of the antenna.
GalinKa [24]
Use Pythagorean Theorem
c2 = a2 + b2
152 = a2 + 12
a2 = 152 - 122
=225 - 144 = 81
a = 9 ft
Distance from base of antenna = 9ft
4 0
2 years ago
3. [6x - 2y=2.<br> (2 + 6x=y
Hunter-Best [27]

Answer:

3. [6x - 2y=2.

(2 + 6x=y

Step-by-step explanation:

4 0
3 years ago
A movies rental company deducts $7 from Serena’s account every month for a year. After 1 year , how much do movie rental fees ch
oksano4ka [1.4K]

Answer:

She's been charged 84 dollars

Step-by-step explanation:

Let's call each month m

if every month it deducts 7 dollars, then to find how much has been charged after a year, we do

-7 * 12 = -84

5 0
3 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
Solve the inequality for x+9&lt;10
Strike441 [17]

Answer:

x < 1

Step-by-step explanation:

x+9<10

Subtract 9 from each side

x+9-9<10-9

x < 1

7 0
3 years ago
Other questions:
  • When you identify the author of a text, which of the following are you are specifically examining in the source?
    9·2 answers
  • r = 13.1 km., d = ? , C = ? a. d = 26.2 km, C = 82.31 km c. d = 6.55 km, C = 82.31 km b. d = 26.2 km, C = 41.15 km d. d = 6.55 k
    12·1 answer
  • How do you get 2 to 5 in multiplying and dividing​
    7·1 answer
  • What set of reflections would carry triangle ABC onto itself?
    6·2 answers
  • Terry wants to make a necklace with 50 beads she knows that 12 beads take up 5 inches of day how many beads fit on one foot a st
    15·1 answer
  • What is the domain of the function represented by this graph
    12·1 answer
  • What is a exponential growth? <br> In your own word please
    8·1 answer
  • On a coordinate plane, an absolute value graph has a vertex at (negative 1, negative 3).
    11·2 answers
  • Find f(7) for<br> the function<br> below.<br> F(x)=1/2 x 2^x
    5·1 answer
  • What is the quotient (3x^2 + 4x - 15) divide (x + 3)?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!