We have been given that
and angle A is in quadrant 1. We are asked to find the exact value of
in simplest radical form.
We know that sine relates opposite side of right triangle with hypotenuse.

This means that opposite side is 12 units and hypotenuse is 13 units.
We know that cotangent relates adjacent side of right triangle with adjacent side.

Now we will find adjacent side using Pythagoras theorem as:




Let us take positive square root on both sides:

Therefore, adjacent side of angle A is 5 units.

Therefore, the exact value of cot A is
.
Answer:
to do this we have to divide 43 by 83
0.51807228915
so the frequency is about 51.8%
Answer:
7
Explanation:
From the question, we're told that triangles AMY and MEG are similar. If triangle AMY has sides AM = 5, MY = 7, and AY = 3 then we can find the side lengths of triangle MEG since we're told from the question that it is a dilation of AMY by a scale factor of 1/3.
So all we need to is multiply the corresponding sides of AMY by 1/3, so we'll have;

We can then go ahead and find the perimeter of MEG. Note that to find the perimeter of a triangle, we add all the length of its sides;

The perimeter of MEG is 7.