The answer is a h(1.25)=20
the parabola has maximum at 9, meaning is a vertical parabola and it opens downwards.
it has a symmetry at x = -5, namely its vertex's x-coordinate is -5.
check the picture below.
so then, we can pretty much tell its vertex is at (-5 , 9), and we also know it passes through (-7, 1)
![\bf ~~~~~~\textit{parabola vertex form} \\\\ \begin{array}{llll} y=a(x- h)^2+ k\qquad \leftarrow \textit{using this one}\\\\ x=a(y- k)^2+ h \end{array} \qquad\qquad vertex~~(\stackrel{}{ h},\stackrel{}{ k}) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} h=-5\\ k=9 \end{cases}\implies y=a[x-(-5)]^2+9\implies y=a(x+5)^2+9](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~%5Ctextit%7Bparabola%20vertex%20form%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%20y%3Da%28x-%20h%29%5E2%2B%20k%5Cqquad%20%5Cleftarrow%20%5Ctextit%7Busing%20this%20one%7D%5C%5C%5C%5C%20x%3Da%28y-%20k%29%5E2%2B%20h%20%5Cend%7Barray%7D%20%5Cqquad%5Cqquad%20vertex~~%28%5Cstackrel%7B%7D%7B%20h%7D%2C%5Cstackrel%7B%7D%7B%20k%7D%29%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20h%3D-5%5C%5C%20k%3D9%20%5Cend%7Bcases%7D%5Cimplies%20y%3Da%5Bx-%28-5%29%5D%5E2%2B9%5Cimplies%20y%3Da%28x%2B5%29%5E2%2B9)
![\bf \textit{we also know that } \begin{cases} x=-7\\ y=1 \end{cases}\implies 1=a(-7+5)^2+9 \\\\\\ -8=a(-2)^2\implies -8=4a\implies \cfrac{-8}{4}=a\implies -2=a \\\\[-0.35em] ~\dotfill\\\\ ~\hfill y=-2(x+5)^2+9~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bwe%20also%20know%20that%20%7D%20%5Cbegin%7Bcases%7D%20x%3D-7%5C%5C%20y%3D1%20%5Cend%7Bcases%7D%5Cimplies%201%3Da%28-7%2B5%29%5E2%2B9%20%5C%5C%5C%5C%5C%5C%20-8%3Da%28-2%29%5E2%5Cimplies%20-8%3D4a%5Cimplies%20%5Ccfrac%7B-8%7D%7B4%7D%3Da%5Cimplies%20-2%3Da%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20~%5Chfill%20y%3D-2%28x%2B5%29%5E2%2B9~%5Chfill)
Answer:
14cm, 16 cm, 18 cm
Step-by-step explanation:
Note that
= a:b: c = 7:8:9
We have to find the sum of the proportion
Sum of proportion = 7 + 8 + 9
= 24
Length of side a
7/24 × 48 = 14 cm
Length of side b
8 /24 × 48 = 16cm
Length of side a
9/24 × 48 = 18 cm
What are the lengths of the sides?
The lengths of the sides of the triangle in cm are
14cm, 16 cm, 18 cm
The length of one side of the octagon is given by:

Then, the apothem can be determined using the Pythagorean theorem in the following way:

Clearing to have:

Then, the area is given by:

Where,
L: length of the octagon sides
a: apotema
Substituting values:
Answer:
the approximate length of the apothem is:
a = 10.91 feet
The approximate area of the floor of the gazebo is:
A = 392.76 feet ^ 2