To answer the question above, multiply the given number of moles by the molar masses.
(A) (0.20 mole) x (32 g / 1 mole) = 6.4 grams O2
(B) (0.75 mole) x (62 g / 1 mole) = 46.5 grams H2CO3
(C) (3.42 moles) x (28 g / 1 mole) = 95.7 grams CO
(D) (4.1 moles) x (29.88 g / 1 mole) = 122.508 g Li2O
The answer to the question above is letter D.
Iodine-131 is one of the most important isotopes used in the diagnosis of thyroid cancer. One atom has a mass of <u>130.906114</u> amu.\
<h3>What is
thyroid cancer?</h3>
Cancer that originates in the tissues of the thyroid gland is known as thyroid cancer. It is a condition where cells develop improperly and are susceptible to spreading to different bodily regions. A bump in the neck or swelling are examples of symptoms. Thyroid cancer is not always diagnosed because it can move from other parts of the body to the thyroid.
Young age radiation exposure, having an enlarged thyroid, and family history are risk factors. Papillary thyroid cancer, follicular thyroid cancer, medullary thyroid cancer, and anaplastic thyroid cancer are the four primary kinds. Ultrasound and tiny needle aspiration are frequently used in diagnosis. As of right now, it is not advised to screen those who are healthy and at normal risk for the disease.
To learn more about thyroid cancer from the given link:
brainly.com/question/11880360
#SPJ4
Solutions are said to be C. homogeneous mixtures, composed of two or more substances. It is usually liquid, however it may be solid or gas.
According to the question, the determined melting point of the compound is 112.5-113.0oC. When the solidified compound was retried, the melting point was found to be 133.6-154.5oC. This greater range higher than 112°C is caused by reusing samples leads to errors.
A pure sample is known by its sharp melting point. A pure sample does not melt over a large range. We can see this in the predetermined melting points of the pure sample(112.5-113.0oC).
However, reusing a sample introduces errors because the pure sample may become contaminated leading to a larger and higher range of melting point (133.6-154.5oC) which is far above 112°C.
Learn more: brainly.com/question/5325004
The oceans store large amounts of energy