1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korvikt [17]
3 years ago
15

If TU = x + 5, UV = 20, and TV = 10x − 11, what is TV?

Mathematics
1 answer:
Aleksandr-060686 [28]3 years ago
3 0

Answer:

TV = 29

Step-by-step explanation:

TU + UV  = TV

x + 5 + 20 = 10x - 11

5 + 20 + 11 = 10x - x

            36 = 9x

           36/9 =  x

       x = 4

TV = 10x − 11 = 10 * 4 - 11 = 40 - 11 = 29

You might be interested in
What is 8/3 written as a mixed number
ololo11 [35]
Give him/ her brainly
8 0
3 years ago
Read 2 more answers
For g(x) = 8x2 – 2x + 5, find g(3).<br> A.O<br> 83<br> B. O 71<br> С.<br> 437<br> D.<br> 78
miv72 [106K]

Answer:

15

Step-by-step explanation:

16 - 2x3 +5

16 - 6 +5

16 - 1

15

6 0
3 years ago
If the scores from an intelligence test are normally distributed, then you would predict that the largest number of people would
Helen [10]

Using the normal distribution, it is found that the prediction is that the largest number of people would receive an IQ score of 100 on that test.

<h3>Normal Probability Distribution</h3>

The z-score of a measure X of a normally distributed variable with mean \mu and standard deviation \sigma is given by:

Z = \frac{X - \mu}{\sigma}

  • The z-score measures how many standard deviations the measure is above or below the mean.
  • Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.

IQ scores have mean of 100, and since in the normal distribution most measures are around the mean, an IQ score of 100 is the prediction.

More can be learned about the normal distribution at brainly.com/question/24663213

6 0
3 years ago
If I have all three angles of a right triangle, how would I find the sides?
Gennadij [26K]

Answer:

For a triangle you have to do Base times height divided by 2

Step-by-step explanation:

Example:

Base:3

Height:4

3 times 4 =12 divided by 2 = 6

8 0
3 years ago
Beads are dropped to create a conical pile such that the ratio of its radius to the height of the pile is constant at 2:3 and th
pav-90 [236]

Answer:

\displaystyle \frac{dh}{dt} = \frac{1}{20 \pi} \ cm/s

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Equality Properties

<u>Geometry</u>

  • Volume of a Cone: \displaystyle V = \frac{1}{3} \pi r^2h

<u>Calculus</u>

Derivatives

Derivative Notation

Differentiating with respect to time

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle \frac{r}{h} = \frac{2}{3} \\\frac{dV}{dt} = 5 \ cm^3/s\\h = 15 \ cm<u />

<u />

<u>Step 2: Rewrite Cone Volume Formula</u>

<em>Find the volume of the cone with respect to height.</em>

  1. Define ratio:                         \displaystyle \frac{r}{h} = \frac{2}{3}
  2. Isolate <em>r</em>:                               \displaystyle r = \frac{2}{3} h
  3. Substitute in <em>r</em> [VC]:             \displaystyle V = \frac{1}{3} \pi (\frac{2}{3}h)^2h
  4. Exponents:                          \displaystyle V = \frac{1}{3} \pi (\frac{4}{9}h^2)h
  5. Multiply:                               \displaystyle V = \frac{4}{27} \pi h^3

<u>Step 3: Differentiate</u>

  1. Basic Power Rule:                                                                                          \displaystyle \frac{dV}{dt} = \frac{4}{27} \pi \cdot 3 \cdot h^{3-1} \cdot \frac{dh}{dt}
  2. Simplify:                                                                                                           \displaystyle \frac{dV}{dt} = \frac{4}{9} \pi h^{2} \frac{dh}{dt}

<u>Step 4: Find Height Rate</u>

<em>Find dh/dt.</em>

  1. Substitute in known variables:                                                                      \displaystyle 5 \ cm^3/s = \frac{4}{9} \pi (15 \ cm)^{2} \frac{dh}{dt}
  2. Isolate <em>dh/dt</em>:                                                                                                   \displaystyle \frac{5 \ cm^3/s}{\frac{4}{9} \pi (15 \ cm)^{2} } = \frac{dh}{dt}
  3. Rewrite:                                                                                                           \displaystyle \frac{dh}{dt} = \frac{5 \ cm^3/s}{\frac{4}{9} \pi (15 \ cm)^{2} }
  4. Evaluate Exponents:                                                                                      \displaystyle \frac{dh}{dt} = \frac{5 \ cm^3/s}{\frac{4}{9} \pi (225 \ cm^2) }
  5. Evaluate Multiplication:                                                                                  \displaystyle \frac{dh}{dt} = \frac{5 \ cm^3/s}{100 \pi cm^2 }
  6. Simplify:                                                                                                          \displaystyle \frac{dh}{dt} = \frac{1}{20 \pi} \ cm/s
3 0
3 years ago
Other questions:
  • What is the next term in this geometric sequence<br>5/6,5/9,10/27,20/81
    14·2 answers
  • How do you solve <br>|3x|=18
    5·2 answers
  • a circle is centered at the point -3,2) and passes through the point (1,5). The radius of the circle is blank units. The point (
    6·1 answer
  • 3y + 5z + 8y - 3z<br><br> A: 11y + 5z<br> B: 14y + 2z<br> C: 14y + 8z<br> D: 16yz
    6·1 answer
  • Please help! I will mark you as brainliest!
    15·1 answer
  • X diminished by the sum of 3x and 12. <br> 2) your elevation is -34ft how is this as a statement?
    10·1 answer
  • What slope is perpendicular to: <br> m = 5/8
    13·2 answers
  • 3125x=−62 value of x.
    6·1 answer
  • You can make a pencil stand up vertically using only four strings for
    8·2 answers
  • I NEED UR HELP ILL BE BRAINLISTING YALL!
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!