Answer: 2.93 ft/sec
Explanation: Calculate the volume/sec entering from the two inlets (Pipes 1 and 2), add them, and then calculate the flow in Pipe 3.
The table illustrates the approach. I calculated the volume of each pipe for a 1 foot section with the indicated diameters, divided by 2 for the radius of each using V = πr²h. Units of V are in^3/foot length. Now we can multiply that volume by the flow rate, in ft/sec, to obtain the flow rate in in^3/sec.
Add the two rates from Pipes 1 and 2 (62.14 in^3/sec) to arrive at the flow rate for Pipe 3 necessary to keep the water level constant. Calculate the volume of 1 foot of Pipe 3 (21.21 in^3/foot) and then divide this into the inflow sum of 62.14 in^3/sec to find the flow rate of Pipe 3 (in feet/sec) necessary to keep the water level constant.
That is 2.93 ft/sec.
Answer:
Diameter of riser =6.02 mm
Explanation:
Given that
Dimensions of rectangular plate is 200mm x 100mm x 20mm.
Volume of rectangle V= 200 x 100 x 20 
Surface area of rectangle A
A=2(200 x 100+100 x 20 +20 x 200)
So V/A=7.69
We know that
Solidification times given as
-----1
Lets take diameter of riser is d
Given that riser is in spherical shape so V/A=d/6
And
Time for solidification of rectangle is 3.5 min then time for solidificartion of riser is 4.2 min.
Lets take 

Now from equation 1

So by solving this d=6.02 mm
So the diameter of riser is 6.02 mm.
Answer:
Explanation:
The cylinder head sits on the engine and closes off the combustion chamber. The gap that remains between the cylinder head and the engine is completed by the head gasket. Another task of the cylinder head is to ensure the constant lubrication of the cylinder
Depending on the age the toy is made for it could teach younger children things such as letters and numbers and for a older kid it could teach them how different things are put in the robot to help it work