1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Crank
3 years ago
9

The period of a pendulum T is assumed to depend only on the mass m, the length of the pendulum `, the acceleration due to gravit

y g, and the angle of swing θ. By means of dimensional analysis, simplify this problem and express this dependence in non dimensional terms.
Engineering
1 answer:
zzz [600]3 years ago
8 0

Answer:

The expression is shown in the explanation below:

Explanation:

Thinking process:

Let the time period of a simple pendulum be given by the expression:

T = \pi \sqrt{\frac{l}{g} }

Let the fundamental units be mass= M, time = t, length = L

Then the equation will be in the form

T = M^{a}l^{b}g^{c}

T = KM^{a}l^{b}g^{c}

where k is the constant of proportionality.

Now putting the dimensional formula:

T = KM^{a}L^{b}  [LT^{-} ^{2}]^{c}

M^{0}L^{0}T^{1} = KM^{a}L^{b+c}

Equating the powers gives:

a = 0

b + c = 0

2c = 1, c = -1/2

b = 1/2

so;

a = 0 , b = 1/2 , c = -1/2

Therefore:

T = KM^{0}l^{\frac{1}{2} } g^{\frac{1}{2} }

T = 2\pi \sqrt{\frac{l}{g} }

where k = 2\pi

You might be interested in
An Ideal gas is being heated in a circular duct as while flowing over an electric heater of 130 kW. The diameter of duct is 500
Rashid [163]

Answer:

Exit temperature = 32 °C

Explanation:

We are given;

Initial Pressure;P1 = 100 KPa

Cp =1000 J/kg.K = 1 KJ/kg.k

R = 500 J/kg.K = 0.5 Kj/Kg.k

Initial temperature;T1 = 27°C = 273 + 27K = 300 K

volume flow rate;V' = 15 m³/s

W = 130 Kw

Q = 80 Kw

Using ideal gas equation,

PV' = m'RT

Where m' is mass flow rate.

Thus;making m' the subject, we have;

m' = PV'/RT

So at inlet,

m' = P1•V1'/(R•T1)

m' = (100 × 15)/(0.5 × 300)

m' = 10 kg/s

From steady flow energy equation, we know that;

m'•h1 + Q = m'h2 + W

Dividing through by m', we have;

h1 + Q/m' = h2 + W/m'

h = Cp•T

Thus,

Cp•T1 + Q/m' = Cp•T2 + W/m'

Plugging in the relevant values, we have;

(1*300) - (80/10) = (1*T2) - (130/10)

Q and M negative because heat is being lost.

300 - 8 + 13 = T2

T2 = 305 K = 305 - 273 °C = 32 °C

13000 + 300 - 8000 = T2

6 0
3 years ago
Two balanced Y-connected loads in parallel, one drawing 15kW at 0.6 power factor lagging and the other drawing 10kVA at 0.8 powe
NemiM [27]

Answer:

(a) attached below

(b) pf_{C}=0.85 lagging

(c) I_{C} =32.37 A

(d) X_{C} =49.37 Ω

(e) I_{cap} =9.72 A and I_{line} =27.66 A

Explanation:

Given data:

P_{1}=15 kW

S_{2} =10 kVA

pf_{1} =0.6 lagging

pf_{2}=0.8 leading

V=480 Volts

(a) Draw the power triangle for each load and for the combined load.

\alpha_{1}=cos^{-1} (0.6)=53.13°

\alpha_{2}=cos^{-1} (0.8)=36.86°

S_{1}=P_{1} /pf_{1} =15/0.6=25 kVA

Q_{1}=P_{1} tan(\alpha_{1} )=15*tan(53.13)=19.99 ≅ 20kVAR

P_{2} =S_{2}*pf_{2} =10*0.8=8 kW

Q_{2} =P_{2} tan(\alpha_{2} )=8*tan(-36.86)=-5.99 ≅ -6 kVAR

The negative sign means that the load 2 is providing reactive power rather than consuming  

Then the combined load will be

P_{c} =P_{1} +P_{2} =15+8=23 kW

Q_{c} =Q_{1} +Q_{2} =20-6=14 kVAR

(b) Determine the power factor of the combined load and state whether lagging or leading.

S_{c} =P_{c} +jQ_{c} =23+14j

or in the polar form

S_{c} =26.92°

pf_{C}=cos(31.32) =0.85 lagging

The relationship between Apparent power S and Current I is

S=VI^{*}

Since there is conjugate of current I therefore, the angle will become negative and hence power factor will be lagging.

(c) Determine the magnitude of the line current from the source.

Current of the combined load can be found by

I_{C} =S_{C}/\sqrt{3}*V

I_{C} =26.92*10^3/\sqrt{3}*480=32.37 A

(d) Δ-connected capacitors are now installed in parallel with the combined load. What value of capacitive reactance is needed in each leg of the A to make the source power factor unity?Give your answer in Ω

Q_{C} =3*V^2/X_{C}

X_{C} =3*V^2/Q_{C}

X_{C} =3*(480)^2/14*10^3 Ω

(e) Compute the magnitude of the current in each capacitor and the line current from the source.

Current flowing in the capacitor is  

I_{cap} =V/X_{C} =480/49.37=9.72 A

Line current flowing from the source is

I_{line} =P_{C} /3*V=23*10^3/3*480=27.66 A

8 0
3 years ago
Suppose there are 76 packets entering a queue at the same time. Each packet is of size 5 MiB. The link transmission rate is 2.1
tia_tia [17]

Answer:

938.7 milliseconds

Explanation:

Since the transmission rate is in bits, we will need to convert the packet size to Bits.

1 bytes = 8 bits

1 MiB = 2^20 bytes = 8 × 2^20 bits

5 MiB = 5 × 8 × 2^20 bits.

The formula for queueing delay of <em>n-th</em> packet is :  (n - 1) × L/R

where L :  packet size = 5 × 8 × 2^20 bits, n: packet number = 48 and R : transmission rate =  2.1 Gbps = 2.1 × 10^9 bits per second.

Therefore queueing delay for 48th packet = ( (48-1) ×5 × 8 × 2^20)/2.1 × 10^9

queueing delay for 48th packet = (47 ×40× 2^20)/2.1 × 10^9

queueing delay for 48th packet = 0.938725181 seconds

queueing delay for 48th packet = 938.725181 milliseconds = 938.7 milliseconds

4 0
3 years ago
How to code the round maze in CoderZ?
dlinn [17]

Answer:

hola

Explanation:

5 0
3 years ago
A cylinder with a frictionless piston contains 0.05 m3 of air at 60kPa. The linear spring holding the piston is in tension. The
AleksAgata [21]

Answer:

18 kJ

Explanation:

Given:

Initial volume of air = 0.05 m³

Initial pressure = 60 kPa

Final volume = 0.2 m³

Final pressure = 180 kPa

Now,

the Work done by air will be calculated as:

Work Done = Average pressure × Change in volume

thus,

Average pressure = \frac{60+180}{2}  = 120 kPa

and,

Change in volume = Final volume - Initial Volume = 0.2 - 0.05 = 0.15 m³

Therefore,

the work done = 120 × 0.15 = 18 kJ

4 0
3 years ago
Other questions:
  • Ion 2 23
    10·1 answer
  • Choose the best data type for each of the following so that any reasonable value is accommodated but no memory storage is wasted
    5·1 answer
  • Is it acceptable to mix used absorbents.
    8·2 answers
  • The heat flux through a 1-mm thick layer of skin is 1.05 x 104 W/m2. The temperature at the inside surface is 37°C and the tempe
    8·1 answer
  • Complete the following sentence.
    13·1 answer
  • Tech A says that some relays are equipped with a suppression diode in parallel with the winding. Tech B says that some relays ar
    10·1 answer
  • प्रहार का समरूपी भिन्नार्थक शब्द अर्थ के साथ ​
    10·1 answer
  • The image shows the relative positions of Earth and the Sun for each of the four seasons. Earth travels in an elliptical orbit a
    11·2 answers
  • Time left 0:35:32 Three steel rod (E = 200 GPa) supports 36 KN Load P. Each of the rods AB and CD has a 200 mm? cross- sectional
    13·1 answer
  • Oil, with density of 900 kg/m3 and kinematic viscosity of 0.00001 m2/s, flows at 0.2 m3/s through 500 m of 200-mm-diameter cast-
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!