Answer:
b. The pirating streams are eroding headwardly to intersect more of the other streams’ drainage basins, causing water to be diverted down their steeper gradients.
Explanation:
From the Kaaterskill NY 15 minute map (1906), this shows two classic examples of stream capture.
The Kaaterskill Creek flow down the east relatively steep slopes into the Hudson River Valley. While, the Gooseberry Creek is a low gradient stream flowing down the west direction which in turn drains the higher parts of the Catskills in this area.
However, there is Headward erosion of Kaaterskill Creek which resulted to the capture of part of the headwaters of Gooseberry Creek.
The evidence for this is the presence of "barbed" (enters at obtuse rather than acute angle) tributary which enters Kaaterskill Creek from South Lake which was once a part of the Gooseberry Creek drainage system.
It should be noted again, that there is drainage divide between the Gooseberry and Kaaterskill drainage systems (just to the left of the word Twilight) which is located in the center of the valley.
As it progresses, this divide will then move westward as Kaaterskill captures more and more of the Gooseberry system.
A 260 ft (79.25m) length of size 4 AWG uncoated copper wire operating at a temperature of 75°c has a resistance of 0.0792 ohm.
Explanation:
From the given data the area of size 4 AWG of the code is 21.2 mm², then K is the Resistivity of the material at 75°c is taken as ( 0.0214 ohm mm²/m ).
To find the resistance of 260 ft (79.25 m) of size 4 AWG,
R= K * L/ A
K = 0.0214 ohm mm²/m
L = 79.25 m
A = 21.2 mm²
R = 0.0214 * 
= 0.0214 * 3.738
= 0.0792 ohm.
Thus the resistance of uncoated copper wire is 0.0792 ohm
Answer:
41.5° C
Explanation:
Given data :
1025 steel
Temperature = 4°C
allowed joint space = 5.4 mm
length of rails = 11.9 m
<u>Determine the highest possible temperature </u>
coefficient of thermal expansion ( ∝ ) = 12.1 * 10^-6 /°C
Applying thermal strain ( Δl / l ) = ∝ * ΔT
( 5.4 * 10^-3 / 11.9 ) = 12.1 * 10^-6 * ( T2 - 4 )
∴ ( T2 - 4 ) = ( 5.4 * 10^-3 / 11.9 ) / 12.1 * 10^-6
hence : T2 = 41.5°C
Answer:
Option B (Starter Control Circuit) is the right option.
Explanation:
- This same switching is normally put upon this isolated side of something like the transmission Arduino microcontroller throughout the configuration that is using the ignition just to command the broadcast.
- It uses a secondary relay isolated to regulate electrical current throughout the solenoid starting system.
All other given options are not related to the given instance. So the above option is correct.