Answer:
First solve for x
then substitute
Step-by-step explanation:
![\frac{x+3}{3}= \frac{y+2}{2}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%2B3%7D%7B3%7D%3D%20%5Cfrac%7By%2B2%7D%7B2%7D)
![6(\frac{x+3}{3}=\frac{y+2}{2})](https://tex.z-dn.net/?f=6%28%5Cfrac%7Bx%2B3%7D%7B3%7D%3D%5Cfrac%7By%2B2%7D%7B2%7D%29)
2x + 6 = 3y + 6
2x = 3y
![x = \frac{3y}{2}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B3y%7D%7B2%7D)
If
then
=
![x = \frac{3y}{2} /3 = \frac{y}3}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B3y%7D%7B2%7D%20%2F3%20%3D%20%5Cfrac%7By%7D3%7D)
Answer: The answer is B
Step-by-step explanation:
Attached below is a step by step process of arriving at the answer.
Answer:
18
Step-by-step explanation:
20/2 + 8
Divide the numerator and denominator by 2
20 / 2
2 / 2
Divide the numbers
10
2 / 2
=
10 / 1
Any expression divided by 1 remains the same
10 + 8 = 18
check the picture below.
now, we're assuming the trapezoid is an isosceles trapezoid, namely AD = BC, and therefore the triangles are twins.
incidentally, b is the height of the trapezoid and likewise is also the altitude or height of the concrete triangle.
so we can simply get the area o the trapezoid, notice the bottom base is a+185+a, and then get the area of the concrete triangle and subtract the triangle from the trapezoid, what's leftover is just the vegetation area.
![\bf \begin{cases} a=283\cdot cos(80^o)\\ a\approx 49.14\\ --------\\ b=283\cdot sin(80^o)\\ b\approx 278.70 \end{cases}\\\\ -------------------------------\\\\ \textit{area of a trapezoid}\\\\ A=\cfrac{h(x+y)}{2}~~ \begin{cases} x,y=\stackrel{bases}{parallel~sides}\\ h=height\\ ----------\\ x=185\\ y\approx \stackrel{a+185+a}{283.28}\\ h\approx\stackrel{b}{278.70} \end{cases} \\\\\\ A=\cfrac{278.70(185+283.28)}{2}\implies A\approx 65254.818](https://tex.z-dn.net/?f=%20%5Cbf%20%5Cbegin%7Bcases%7D%20a%3D283%5Ccdot%20cos%2880%5Eo%29%5C%5C%20a%5Capprox%2049.14%5C%5C%20--------%5C%5C%20b%3D283%5Ccdot%20sin%2880%5Eo%29%5C%5C%20b%5Capprox%20278.70%20%5Cend%7Bcases%7D%5C%5C%5C%5C%20-------------------------------%5C%5C%5C%5C%20%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7Bh%28x%2By%29%7D%7B2%7D~~%20%5Cbegin%7Bcases%7D%20x%2Cy%3D%5Cstackrel%7Bbases%7D%7Bparallel~sides%7D%5C%5C%20h%3Dheight%5C%5C%20----------%5C%5C%20x%3D185%5C%5C%20y%5Capprox%20%5Cstackrel%7Ba%2B185%2Ba%7D%7B283.28%7D%5C%5C%20h%5Capprox%5Cstackrel%7Bb%7D%7B278.70%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20A%3D%5Ccfrac%7B278.70%28185%2B283.28%29%7D%7B2%7D%5Cimplies%20A%5Capprox%2065254.818%20)
so that's the area of the trapezoid, now let's get the area of the triangle.
![\bf \stackrel{triangle}{\cfrac{1}{2}(185)(b)}\implies \cfrac{1}{2}(185)(278.70)\qquad \approx 25779.80\\\\ -------------------------------\\\\ \stackrel{\textit{area for vegetation}}{\stackrel{\textit{area of trapezoid}}{65254.818}~~-~~\stackrel{\textit{area of triangle}}{25779.80}}\implies 39475.018](https://tex.z-dn.net/?f=%20%5Cbf%20%5Cstackrel%7Btriangle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%28185%29%28b%29%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B2%7D%28185%29%28278.70%29%5Cqquad%20%5Capprox%2025779.80%5C%5C%5C%5C%20-------------------------------%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Barea%20for%20vegetation%7D%7D%7B%5Cstackrel%7B%5Ctextit%7Barea%20of%20trapezoid%7D%7D%7B65254.818%7D~~-~~%5Cstackrel%7B%5Ctextit%7Barea%20of%20triangle%7D%7D%7B25779.80%7D%7D%5Cimplies%2039475.018%20)
since we know 36 yd² cost 12 bucks, then how much will it be for 39475.018 yd²?
![\bf \begin{array}{ccll} yd^2&\$\\ \text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\ 36&12\\ 39475.018&x \end{array}\implies \cfrac{36}{39475.018}=\cfrac{12}{x}\implies x=\cfrac{39475.018\cdot 12}{36} \\\\\\ x\approx 13158.339\overline{3}](https://tex.z-dn.net/?f=%20%5Cbf%20%5Cbegin%7Barray%7D%7Bccll%7D%20yd%5E2%26%5C%24%5C%5C%20%5Ctext%7B%5Ctextemdash%5Ctextemdash%5Ctextemdash%7D%26%5Ctext%7B%5Ctextemdash%5Ctextemdash%5Ctextemdash%7D%5C%5C%2036%2612%5C%5C%2039475.018%26x%20%5Cend%7Barray%7D%5Cimplies%20%5Ccfrac%7B36%7D%7B39475.018%7D%3D%5Ccfrac%7B12%7D%7Bx%7D%5Cimplies%20x%3D%5Ccfrac%7B39475.018%5Ccdot%2012%7D%7B36%7D%20%5C%5C%5C%5C%5C%5C%20x%5Capprox%2013158.339%5Coverline%7B3%7D%20)