Answer:
A = 68 unit^2
Step-by-step explanation:
Given:-
The piece-wise function f(x) is defined over an interval as follows:
f(x) = { x^2+3x+4 , x < 3
f(x) = { x^2+3x+4 , x≥3
Domain : [ -3 , 4 ]
Find:-
Find the area of the region enclosed by f(x) and the x axis
Solution:-
- The best way to tackle problems relating to piece-wise functions is to solve for each part individually and then combine the results.
- The first portion of function is valid over the interval [ -3 , 3 ]:
![f(x) = x^2+3x+4](https://tex.z-dn.net/?f=f%28x%29%20%3D%20x%5E2%2B3x%2B4)
- The area "A1" bounded by f(x) is given as:
![A1 = \int\limits^a_b {f(x)} \, dx](https://tex.z-dn.net/?f=A1%20%3D%20%5Cint%5Climits%5Ea_b%20%7Bf%28x%29%7D%20%5C%2C%20dx)
Where, The interval of the function { -3 , 3 ] = [ a , b ]:
![A1 = \int\limits^a_b {x^2+3x+4} \, dx\\\\A1 = \frac{x^3}{3} + \frac{3x^2}{2} + 4x |\limits_-_3^3 \\\\A1 = \frac{3^3}{3} + \frac{3*3^2}{2} + 4*3 - \frac{-3^3}{3} - \frac{3(-3)^2}{2} - 4(-3)\\\\A1 = 9 + 13.5 +12 + 9-13.5+12\\\\A1 =42 unit^2](https://tex.z-dn.net/?f=A1%20%3D%20%5Cint%5Climits%5Ea_b%20%7Bx%5E2%2B3x%2B4%7D%20%5C%2C%20dx%5C%5C%5C%5CA1%20%3D%20%5Cfrac%7Bx%5E3%7D%7B3%7D%20%2B%20%5Cfrac%7B3x%5E2%7D%7B2%7D%20%2B%204x%20%7C%5Climits_-_3%5E3%20%5C%5C%5C%5CA1%20%3D%20%5Cfrac%7B3%5E3%7D%7B3%7D%20%2B%20%5Cfrac%7B3%2A3%5E2%7D%7B2%7D%20%2B%204%2A3%20-%20%5Cfrac%7B-3%5E3%7D%7B3%7D%20-%20%5Cfrac%7B3%28-3%29%5E2%7D%7B2%7D%20-%204%28-3%29%5C%5C%5C%5CA1%20%3D%209%20%2B%2013.5%20%2B12%20%2B%209-13.5%2B12%5C%5C%5C%5CA1%20%3D42%20unit%5E2)
- Similarly for the other portion of piece-wise function covering the interval [3 , 4] :
![f(x) = 4x+10](https://tex.z-dn.net/?f=f%28x%29%20%3D%204x%2B10)
- The area "A2" bounded by f(x) is given as:
![A2 = \int\limits^a_b {f(x)} \, dx](https://tex.z-dn.net/?f=A2%20%3D%20%5Cint%5Climits%5Ea_b%20%7Bf%28x%29%7D%20%5C%2C%20dx)
Where, The interval of the function { 3 , 4 ] = [ a , b ]:
![A2 = \int\limits^a_b {4x+10} \, dx\\\\A2 = 2x^2 + 10x |\limits_3^4 \\\\A2 = 2*(4)^2 + 10*4 - 2*(3)^2 - 10*3\\\\A2 = 32 + 40 - 18-30\\\\A2 =26 unit^2](https://tex.z-dn.net/?f=A2%20%3D%20%5Cint%5Climits%5Ea_b%20%7B4x%2B10%7D%20%5C%2C%20dx%5C%5C%5C%5CA2%20%3D%202x%5E2%20%2B%2010x%20%7C%5Climits_3%5E4%20%5C%5C%5C%5CA2%20%3D%202%2A%284%29%5E2%20%2B%2010%2A4%20-%202%2A%283%29%5E2%20-%2010%2A3%5C%5C%5C%5CA2%20%3D%2032%20%2B%2040%20-%2018-30%5C%5C%5C%5CA2%20%3D26%20unit%5E2)
- The total area "A" bounded by the piece-wise function over the entire domain [ -3 , 4 ] is given:
A = A1 + A2
A = 42 + 26
A = 68 unit^2