Answer:
The frequency of vibration will be unchanged.
Explanation:
The frequency of oscillation of a simple pendulum is given by

where,
is the acceleration due to gravity and
is the length of the pendulum.
It can be seen from the formula that the frequency of the pendulum is independent of the mass.
Thus, the frequency of vibration will be same.
Answer:
In summary, it is safe to handle this voltage with dry hands because the current value that you pass through the body is smaller than its underestimated sensitivity.
Explanation:
The current flowing through your system is described by Ohm's law
V = I R
where I is the current, V the voltage and R the resistance
in this case three barateras are taken in series giving a total voltage of V = 4.5 V the typical resistance values of dry skin is R = 1000 000Ohm and the resinification of wet skin is R = 100000 ohm
let's calculate the current flowing
I = V / R
I = 4.5 / 1000000
I = 4.5 10⁻⁶ A
this is the current with dry hands, we see that much less than the value that allows to feel a painful response by the body
If the skin is
I = 4,5 / 100,000
I = 4.5 10⁻⁵ A
This value is small, but it is close to the pain threshold, but it is in the range of slight discomfort.
In summary, it is safe to handle this voltage with dry hands because the current value that you pass through the body is smaller than its underestimated sensitivity.
Answer:
The increase in gravitational potential energy is the same in both cases
Explanation:
It is easier to climb a mountain in a zigzag way rather than climbing on a straight line but since the distance is the same ( vertical height ) , mass and gravity is the same. Hence the increase in gravitational potential energy is the same in both cases.
gravitational potential energy = mgh ( same in both cases )
m = mass
g = acceleration due to gravity
h = distance ( vertical height )
We make use of the equation: v^2=v0^2+2a Δd. We substitute v^2 equals to zero since the final state is halting the truck. Hence we get the equation -<span>v0^2/2a = Δd. F = m a from the second law of motion. Rearranging, a = F/m
</span>F = μ Fn where the force to stop the truck is the force perpendicular or normal force multiplied by the static coefficient of friction. We substitute, -v0^2/2<span>μ Fn/m</span> = Δd. This is equal to
Answer:
technically yes
Explanation:
with a gun depending on how fast it shoots so when you fire at something you shoot in front of it a little bit so you hit it but a plane that fast you shoot like 100 feet infront of it...