Answer:
(a) 2 (b) 4 (c) 4
Explanation:
Significant figures : The figures in a number which express the value -the magnitude of a quantity to a specific degree of accuracy is known as significant digits.
Rules for significant figures:
- Digits from 1 to 9 are always significant and have infinite number of significant figures.
- All non-zero numbers are always significant. For example: 654, 6.54 and 65.4 all have three significant figures.
- All zero’s between integers are always significant. For example: 5005, 5.005 and 50.05 all have four significant figures.
- All zero’s preceding the first integers are never significant. For example: 0.0078 has two significant figures.
- All zero’s after the decimal point are always significant. For example: 4.500, 45.00 and 450.0 all have four significant figures.
- All zeroes used solely for spacing the decimal point are not significant. For example : 8000 has one significant figure.
As per question,
0.000054 has 2 significant figures.
3.001 x 10⁵ has 4 significant figures.
5.600 has 4 significant figures.
Energy to lift something =
(mass of the object) x (gravity) x (height of the lift).
BUT ...
This simple formula only works if you use the right units.
Mass . . . kilograms
Gravity . . . meters/second²
Height . . . meters
For this question . . .
Mass = 55 megagram = 5.5 x 10⁷ grams = 5.5 x 10⁴ kilograms
Gravity (on Earth) = 9.8 m/second²
Height = 500 cm = 5.0 meters
So we have ...
Energy = (5.5 x 10⁴ kilogram) x (9.8 m/s²) x (5 m)
= 2,696,925 joules .
That's quite a large amount of energy ... equivalent to
straining at the rate of 1 horsepower for almost exactly an
hour, or burning a 100 watt light bulb for about 7-1/2 hours.
The reason is the large mass that's being lifted.
On Earth, that much mass weighs about 61 tons.
Answer:
false statement : b ) For the motion of a cart on an incline plane having a coefficient of kinetic friction of 0.5, the magnitude of the change in kinetic energy equals the magnitude of the change in gravitational potential energy
Explanation:
mechanical energy = potential energy + kinetic energy = constant
differentiating both side
Δ potential energy + Δ kinetic energy = 0
Δ potential energy = - Δ kinetic energy
first statement is true.
Friction is a non conservative force so inter-conversion of potential and kinetic energy is not possible in that case. In case of second option, the correct relation is as follows
change in gravitational potential energy = change in kinetic energy + work done against friction .
So given 2 nd option is incorrect.
In case of no change in gravitational energy , work done is equal to
change in kinetic energy.
Answer:
Explanation:
Electric field between plates of a parallel plate capacitor is uniform .
In a uniform electric field , relation between electric field and potential gradient is as follows
electric field = potential gradient [ E = - dV / dl ]
in the given case ,
dV = 51 V ,
dl = 4 cm
= 4 x 10⁻² m
E = 51 / 4 x 10⁻²
= 12.75 x 10² V / m
= 1275 V / m
Answer:
Explanation:
Given that,
The length of a simple pendulum, l = 2.2 m
The time period of oscillations, T = 4.8 s
We need to find the surface gravity of the planet. The time period of the planet is given by the relation as follows :
Put all the values,
So, the value of the surface gravity of the planet is equal to .