Answer:
The magnitude of the magnetic torque on the coil is 1.98 A.m²
Explanation:
Magnitude of magnetic torque in a flat circular coil is given as;
τ = NIASinθ
where;
N is the number of turns of the coil
I is the current in the coil
A is the area of the coil
θ is the angle of inclination of the coil and magnetic field
Given'
Number of turns, N = 200
Current, I = 7.0 A
Angle of inclination, θ = 30°
Diameter, d = 6 cm = 0.06 m
A = πd²/4 = π(0.06)²/4 = 0.002828 m²
τ = NIASinθ
τ = 200 x 7 x 0.002828 x Sin30
τ = 1.98 A.m²
Therefore, the magnitude of the magnetic torque on the coil is 1.98 A.m²
C. endothermic
An endothermic process takes heat from the surroundings while an exothermic process gives out heat to the surroundings.
Answer:
Im not 100% sure but i think the answer is A. An electron in an atom jumping from a lower energy state to a higher one.
Explanation:
lmk if its wrong
Compared with the amount of current in the filament of a lamp, the amount of current in the connecting wire is
D. the same.
As per the rule, the amount of current in devices connected in series is equal. here in the given situation , the wire is in series with the filament. that is the reason that the current in filament and wire is same.
hence the correct choice is D)
They will subtract to form a combined wave with a lower amplitude