1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa86 [58]
3 years ago
14

A pond forms as water collects in a conical depression of radius a and depth h. Suppose that water flows in at a constant rate k

and is lost through evaporation at a rate proportional to the surface area.(a) Show that the volume V(t) of water in the pond at time t satisfies the differential equation dV/dt=k−απ(3a/πh)2/3V2/3,whereαis the coefficient of evaporation.(b) Find the equilibrium depth of water in the pond. Is the equilibrium asymptotically stable?(c) Find a condition that must be satisfied if the pond is not to overflow.
Mathematics
1 answer:
Scrat [10]3 years ago
5 0

Answer:

a. dV/dt = K - ∝π(3a/πh)^⅔V^⅔

b. V = (hk^3/2)/[(∝^3/2.π^½.(3a))]

The small deviations from the equilibrium gives approximately the same solution, so the equilibrium is stable.

c. πa² ≥ k/∝

Step-by-step explanation:

a.

The rate of volume of water in the pond is calculated by

The rate of water entering - The rate of water leaving the pond.

Given

k = Rate of Water flows in

The surface of the pond and that's where evaporation occurs.

The area of a circle is πr² with ∝ as the coefficient of evaporation.

Rate of volume of water in pond with time = k - ∝πr²

dV/dt = k - ∝πr² ----- equation 1

The volume of the conical pond is calculated by πr²L/3

Where L = height of the cone

L = hr/a where h is the height of water in the pond

So, V = πr²(hr/a)/3

V = πr³h/3a ------ Make r the subject of formula

3aV = πr³h

r³ = 3aV/πh

r = ∛(3aV/πh)

Substitute ∛(3aV/πh) for r in equation 1

dV/dt = k - ∝π(∛(3aV/πh))²

dV/dt = k - ∝π((3aV/πh)^⅓)²

dV/dt = K - ∝π(3aV/πh)^⅔

dV/dt = K - ∝π(3a/πh)^⅔V^⅔

b. Equilibrium depth of water

The equilibrium depth of water is when the differential equation is 0

i.e. dV/dt = K - ∝π(3a/πh)^⅔V^⅔ = 0

k - ∝π(3a/πh)^⅔V^⅔ = 0

∝π(3a/πh)^⅔V^⅔ = k ------ make V the subject of formula

V^⅔ = k/∝π(3a/πh)^⅔ -------- find the 3/2th root of both sides

V^(⅔ * 3/2) = k^3/2 / [∝π(3a/πh)^⅔]^3/2

V = (k^3/2)/[(∝π.π^-⅔(3a/h)^⅔)]^3/2

V = (k^3/2)/[(∝π^⅓(3a/h)^⅔)]^3/2

V = (k^3/2)/[(∝^3/2.π^½.(3a/h))]

V = (hk^3/2)/[(∝^3/2.π^½.(3a))]

The small deviations from the equilibrium gives approximately the same solution, so the equilibrium is stable.

c. Condition that must be satisfied

If we continue adding water to the pond after the rate of water flow becomes 0, the pond will overflow.

i.e. dV/dt = k - ∝πr² but r = a and the rate is now ≤ 0.

So, we have

k - ∝πa² ≤ 0 ---- subtract k from both w

- ∝πa² ≤ -k divide both sides by - ∝

πa² ≥ k/∝

You might be interested in
Find the radius when d=18
nirvana33 [79]

Answer:

9

Step-by-step explanation:

radius is half of the diameter

7 0
2 years ago
Read 2 more answers
Is 3x= 5y a linear equation?
QveST [7]
If it is 1st degree (highest exponent is 1) then it is linear

3x^1=5y^1
yep, it's linear
8 0
3 years ago
Given a graph for the transformation of f(x) in the format g(x) = f(x) + k, determine the k value.
enyata [817]

Answer:

k=6

Step-by-step explanation:

The parabola that opens up and passes through (-3,-3) will have equation,

f(x) =  {x}^{2}  - 12

The parabola the opens up a d passes through (-3,3) will have equation:

g(x) =  {x}^{2}  - 6

We want to determine the value of k, for which,

g(x) = f(x) + k

We rewrite g(x) in terms of f(x) to get:

{x}^{2}  - 6 =  {x}^{2}   - 12 + 6

g(x)  \to({x}^{2}  - 6 )= f(x) \to ({x}^{2}   - 12 )+k  \to6

Therefore;

g(x) = f(x) + 6

Hence k=6

3 0
3 years ago
If f(x)=7x+4x and g(x) =1/2x what is the value of (f/g)(5)
Aliun [14]

Answer:

(f/g)(5) = 22

Step-by-step explanation:

All we need to do is plug in 5 for x in both f(x) and g(x) then divide the result of f(x) and g(x) to find our final answer.

Step 1: Plug in 5 for x

f(x) = 7(5) + 4(5) = 55

g(x) = 1/2(5) = 2.5

Step 2: Divide f(x) by g(x)

f(5)/g(5) = 55/2.5 = 22

And we have our final answer!

4 0
3 years ago
Four cups of flour make 5/6 batch of bread. How many cups of flour make 1 batch?
melisa1 [442]

Answer:

1 and 1/4ths a cup to make a batch if i worded that right

5 0
1 year ago
Other questions:
  • Find the​ slope-intercept equation of the line that has the given characteristics:
    10·1 answer
  • For the data shown in the stem-and-leaf plot, what is the effect on the mean and median of adding the value 10 to the data set?
    5·2 answers
  • Kat owns 15% more figurines
    14·1 answer
  • Ms.Martin has 7,000 dollar in her saving account , Alonzo has 1 /10 as much money in his account as Ms.Martin, how much money do
    13·1 answer
  • Multiplying a number by 4/5 then dividing by 2/5 is the number same as multiplying by what number ?
    5·1 answer
  • What is the inverse of the function f(x) = 2x + 1?
    9·2 answers
  • Which statement is true for the values of Pand Q on this number line? + Q + -2 1 -4 -3 0 1 A 응 4 B. PxQ5 C P+Q> -4 D P - Qo​
    6·1 answer
  • Write the equation of the line that passes through the points (-9,-7)(−9,−7) and (-4,4)(−4,4).
    12·1 answer
  • Select all the numbers that are solutions that are equal x^2=15
    8·1 answer
  • Pleaseeeee help :((!!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!