1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhannawk [14.2K]
3 years ago
14

I need help converting 25 oz to g

Mathematics
2 answers:
GenaCL600 [577]3 years ago
8 0

Answer: 708.738 because 1 oz = 28.35 grams

25 x 28.35 = 708.738

Step-by-step explanation:

s2008m [1.1K]3 years ago
3 0
The answer is 708.74 grams
You might be interested in
A woman has 19 coins in her pocket, all of which are dimes and quarters. If the total value of the coins is $ 3.55, how many dim
mars1129 [50]
13 quarters = 3.25 and 3 dimes =.30 which = 3.55
4 0
3 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
What is 1/10 of 6,000
guapka [62]
600 is your answer....
4 0
3 years ago
Read 2 more answers
What is the following product? sqrt 12*sqrt 18
uysha [10]
------------------
√12*√18

2√3√18

2√3 x 3√2

2 x 3√3 x 2

2 x 3√6

6√6 or 14.696938
------------------
6 0
3 years ago
Read 2 more answers
Sean has 3 times as many vegetable plants as Liz and Sejuan combined. Liz has 3 vegetable plants, and Sejuan has 2 vegetable pla
DIA [1.3K]
Let
x------------><span>Sean vegetable plants
</span>y------------>Liz vegetable plants
z------------>Sejuan  vegetable plants

we know that
y=3
z=2
x=3(y+z)--------> 3(3+2)=15

the answer part A) is
Sean has 15 vegetable plants

part B

This is an example of a part-whole problem.----------> true
<span>This is an example of a comparison problem.-------> true
</span>Addition then multiplication can be used to solve the problem.------> true
5 0
4 years ago
Other questions:
  • The sum of 2 number is 42 and when you switch the order the difference is 5
    5·1 answer
  • a sailfish can go as fast as 68mph. in 1 min. can a sailfish swim as far as 1 mile? explain the answer.
    12·1 answer
  • What is the value of x in the equation below?<br> -3-(-8)-(-2) = x<br> O-13<br> O9<br> O 3<br> O 7
    8·1 answer
  • Alex wants to have $10,000 for a car in 8 years. Alex finds an account that earns 15% interest, compounded monthly. How
    15·1 answer
  • PLZ HELP WITH THIS QUESTION!
    11·1 answer
  • Blank - 2 1/3 = 3 1/3 please help I need to finish my homework :(
    14·2 answers
  • If x = <br><img src="https://tex.z-dn.net/?f=2%20%2B%20%20%5Csqrt%7B3%7D%20" id="TexFormula1" title="2 + \sqrt{3} " alt="2 + \
    12·2 answers
  • Two rectangular rugs are ordered at Cardi’s furniture: small rugs and large rugs.
    9·1 answer
  • The model car is 3 inches long. On the box, it says the scale of the model is 1/42. What is the length of the actual car in feet
    6·2 answers
  • Patulong po,thankyou
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!