Answer:
The largest possible number of x intercept is 9 while the largest possible number of relative max/min is 8
Step-by-step explanation:
For any polynomial of degree n with distinct and real solutions, it can have at most n different x intercepts. This would imply it can have at most 9 distinct real solutions.
It can also have at most n-1 relative max/min in alternating order. This is best illustrated when such polynomial is sketched on a graph.
For example a quadratic expression is a polynomial of degree 2 and has at most 2 distinct solutions and 1 relative max/min.
In this question, for the polynomial, its degree (n) = 9
So it can have at most 9 x intercepts and at most 8 relative max/min.
For this case we have an equation of the form:
f (w) = A * (b) ^ w
Where,
A: initial amount
b: growth rate
w: number of weeks
Substituting values we have:
f (w) = 400 * (1.05) ^ w
Answer:
the beetle population can be determined after a number of weeks, w, with the following function:
f (w) = 400 * (1.05) ^ w
3. Three and four tenths. 3+0.4=3.4
4. Two and fifty-one hundredths. 2+0.51=2.51
5. 8/10
6. 0.05
7. 46/100
8. 0.6
9. 9/10
10. 0.35
1 and 2 are correct btw
Answer:
Line A
Step-by-step explanation:
Line A has a constant of proportionality (slope) of 4.