Given a quadratic equation

1. the first thing we do when we want to compete the square, is write the coefficient of x as 2 times a number.
In our case the coefficient of x is 10, so we write 10 as 2*5
2. then we write +

and -

to the expression:



Answer:
Answer:

Step-by-step explanation:
If
, then
. It follows that
![\begin{aligned} \\\frac{g(x+h)-g(x)}{h} &= \frac{1}{h} \cdot [g(x+h) - g(x)] \\&= \frac{1}{h} \left( \frac{1}{x+h} - \frac{1}{x} \right)\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%20%5C%5C%5Cfrac%7Bg%28x%2Bh%29-g%28x%29%7D%7Bh%7D%20%26%3D%20%5Cfrac%7B1%7D%7Bh%7D%20%5Ccdot%20%5Bg%28x%2Bh%29%20-%20g%28x%29%5D%20%5C%5C%26%3D%20%5Cfrac%7B1%7D%7Bh%7D%20%5Cleft%28%20%5Cfrac%7B1%7D%7Bx%2Bh%7D%20-%20%5Cfrac%7B1%7D%7Bx%7D%20%5Cright%29%5Cend%7Baligned%7D)
Technically we are done, but some more simplification can be made. We can get a common denominator between 1/(x+h) and 1/x.

Now we can cancel the h in the numerator and denominator under the assumption that h is not 0.

(f∘g)(x) is equivalent to f(g(x)). We solve this problem just as we solve f(x). But since it asks us to find out f(g(x)), in f(x), each time we encounter x, we replace it with g(x).
In the above problem, f(x)=x+3.
Therefore, f(g(x))=g(x)+3.
⇒(f∘g)(x)=2x−7+3
⇒(f∘g)(x)=2x−4
Basically, write the g(x) equation where you see the x in the f(x) equation.
f∘g(x)=(g(x))+3 Replace g(x) with the equation
f∘g(x)=(2x−7)+3
f∘g(x)=2x−7+3 we just took away the parentheses
f∘g(x)=2x−4 Because the −7+3=4
This is it
g∘f(x) would be the other way around
g∘f(x)=2(x+3)−7
now you have to multiply what is inside parentheses by 2 because thats whats directly in front of them.
g∘f(x)=2x+6−7
Next, +6−7=−1
g∘f(x)=2x−1
Its a lts easier than you think!
Hope this helped
The correct option is (B) 4x^2 + 18x + 18
Explanation:
The area is given as:
(3+2x)(6+2x)
To find the polynomial just simplify it.
3(6+2x) + 2x(6+2x)
18 + 6x + 12x + 4x^2
4x^2 + 18x + 18