Answer:

Explanation:
We will need a balanced chemical equation with masses and molar masses, so, let's gather all the information in one place.
Mᵣ: 98.08 392.18
2Cr + 3H₂SO₄ ⟶ Cr₂(SO₄)₃ + 3H₂
To solve the stoichiometry problem, you must
- Use the molar mass of H₂SO₄ to convert the mass of H₂SO₄ to moles of H₂SO₄
- Use the molar ratio to convert moles of H₂SO₄ to moles of Cr₂(SO₄)₃
- Use the molar mass of Cr₂(SO₄)₃ to convert moles of Cr₂(SO₄)₃ to mass of Cr₂(SO₄)₃
a) Mass of Cr₂(SO₄)₃
(i) Mass of pure H₂SO₄

(ii) Moles of H₂SO₄

(iii) Moles of Cr₂(SO₄)₃
The molar ratio is 1 mol Cr₂(SO₄)₃:3 mol H₂SO₄

(iv) Mass of Cr₂(SO₄)₃

b) Percentage yield
It is impossible to get a yield of 485.9 g. I will assume you meant 185.9 g.

Answer:
Molar mass= 78.8gmol-1
Explanation:
P= 550torr, V= 0.0732dm3, m= 0.5g , R= 8.314, T= 273+489= 762K
Applying
PV= m/Mm×(R×T)
Substitute and Simplify
Mm= 78.8gmol-1
Answer:
There are many reasons to examine human cells and tissues under the microscope. Medical and biological research is underpinned by knowledge of the normal structure and function of cells and tissues and the organs and structures that they make up. In the normal healthy state, the cells and other tissue elements are arranged in regular, recognizable patterns. Changes induced by a wide range of chemical and physical influences are reflected by alterations in the structure at a microscopic level, and many diseases are characterized by typical structural and chemical abnormalities that differ from the normal state. Identifying these changes and linking them to particular diseases is the basis of histopathology and cytopathology, important specializations of modern medicine. Microscopy plays an important part in haematology (the study of blood), microbiology (the study of microorganisms including parasites and viruses), and more broadly in the areas of biology, zoology, and botany. In all these disciplines, specimens are examined under a microscope.
<em><u>hope</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>helps</u></em><em><u> </u></em>
Answer
Two different elements have similar chemical properties when they have the same number of valence electrons in their outermost energy level. ... Elements in the same column of the Periodic Table have the same number of valence electrons – that's why they have similar chemical properties.
Density = mass/volume
If you have the density and volume of a substance, you can use this relationship to calculate the mass. Here, you have 149 milliliters of ethanol, and there are 0.789 grams of ethanol in every milliliter of ethanol. So the mass of 149 mL of ethanol can be obtained by multiplying: (0.789 g/mL)(149 mL) = 118 grams of ethanol.