Technically, the answer should be 3.30 * 10^23 grams. But I think you mean either molecules, atoms, moles or grams of Ni2I6 with that number of molecules .
1 mole of Ni2 I6 = 6.02 * 10^23 molecules
x [mole] = 3.30 * 10^23 molecules
1/x = 6.02 * 10^23 / 3.30 * 10^23 Cancel the 10^23 on the right side
1/x = 6.02 / 3.30 Cross multiply
3.30 = 6.02 x Divide by 6.02
3.30 / 6.02 = x
x = 0.548 moles
what to do from here?
1 mole of Ni2I6 is
2 * Ni = 2 * 59 = 118 grams
6 * I = 6 * 131 = <u>786 grams</u>
Total = 904 grams
Set up a proportion.
<u>1 mole Ni2I6 </u> = <u>904 grams</u>
0.548 moles = x
1/0.548 = 904/x Cross multiply
x = 0.548 * 904
x = 495.4 grams of Ni2I6 <<<<<< Answer.
A 0.00143 M concentration of MnO4^- is not a reasonable solution .
<h3>Number of moles of carbonate</h3>
The ions left in solution are Na^+ and NO3^-
Number of moles of calcium nitrate = 100/1000 L × 1 = 0.1 moles
Since;
1 mole of sodium carbonate reacts with 1 mole of calcium nitrate then 0.1 moles of sodium carbonate were used.
<h3>Conductivity of filtrate</h3>
The claim of the student that the concentration of sodium carbonate is too low is wrong because the value was calculated from concentration and volume of calcium nitrate and not using the precipitate. If the filtrate is tested for conductivity, it will be found to conduct electricity because it contains sodium and NO3 ions.
2) In the reaction as shown, the MnO4^- ion was reduced.
The initial volume is 3.4 mL while the final volume is 29.6 mL.
Number of moles of MnO4^- ion = (29.6 mL - 3.4 mL)/1000 × 0.0235 M = 0.0006157 moles
<h3>The calculations are performed as follows</h3>
- If 2 moles of MnO4^- reacted with 5 moles of acid
0.0006157 moles of MnO4^- reacted with 0.0006157 moles × 5 moles/ 2 moles
= 0.0015 moles
- In this case, number of moles of acid = 0.139 g/90 g/mol = 0.0015 moles
Number of moles of MnO4^- = 0.00143 M × (29.6 mL - 3.4 mL)/1000
= 0.000037 moles
- If 2 moles of MnO4^- reacts with 5 moles of acid
0.000037 moles of MnO4^- reacts with 0.000037 moles × 5 moles/ 2 moles
= 0.000093 moles
- Hence, this is not a reasonable amount of solution.
Learn more about MnO4^- : brainly.com/question/10887629
Answer : The correct option is B.
Explanation :
The temperature of the warm water is higher than the cold water. That means as the temperature of warm water increases, the kinetic energy of the warm water molecule also increases.
As the kinetic energy of the warm water molecule increases, the number of molecules conversion into a vapor also increases (i.e, quick evaporation), thereby increasing the vapor pressure of warm water.
Hence, the correct answer is, (B) Warm water evaporates more quickly.
Potassium Iodide have a lot of strong bonds which requires a very high temperature (high energy) to break them and change into a different state of matter.
We use the osmotic pressure to determine the concentration of the solute in the solution. Then, we multiply the volume of the solution to determine the number of moles of solute particles. We need to establish to equations since we have two unknowns, the mass of of each solute. We do as follows:
osmotic pressure = CRT
<span>C = 7.75 / 0.08205 (296.15) = 0.3189 mol / L</span>
<span>moles of particles = C*V = 0.3189*0.250 =0.0797 mol </span>
<span>0.0797 = moles of sucrose + 2*moles of salt </span>
<span>x + 2y = 0.0797 </span>
<span>and </span>
<span>x(MMsucrose) + y(MMNaCl) = 10.2</span>
<span>342x + 58.5y = 10.2
</span>
<span>solve for x and y
</span>
<span>x = 0.0252 mol sucrose</span>
<span>y = 0.0273 mol NaCl
</span>
<span>mass Sucrose = 0.0252(342) = 8.6184 g </span>
<span>mass NaCl = 0.0273(58.5) = 1.5971 g </span>
<span>% NaCl = (1.5971 / 10.2)*100 = 15.66%</span>