Yes, it is an equivalent expression because even though you move two pieces of an equation it will still equal the same thing, unless there are parentheses involved.
1) -10x+y=4
Now, you should substitute x in every situation.
* x=-2 <em>=> -10*(-2)+y=4... 20+y=4... <u>y=-16</u></em>
<em />* x=-1 =>-10*(-1)+y=4... 10+y=4... <u>y=-6</u>
<u />*x=0 => -10*0+y=4... <u>y=4</u>
<u />* x=1 => -10*1+y=4... -10+y=4... <u>y=14</u>
<u />* x=2 => -10*2+y=4... -20+y=4... <u>y=24</u>
<u>2)</u> -5x-1=y
For example: x=0
-5*0-1=-1
<u>
</u>
Step 1
Formulate a recursive sequence modeling the number of grams after n minutes.
we have that
100%-17.1%-------------- > 82.9%------------> 0.829
a(n) = 780*[0.829<span>^n]
</span>
for n=19 minutes
a(19)=780*[0.829^(19)]=22.1121 g---------------> 22.1 g
the answer is 22.1 g
Answer:
- <u><em>A dilation by a scale factor of 4 and then a reflection across the x-axis </em></u>
Explanation:
<u>1. Vertices of triangle FGH:</u>
- F: (-2,1)
- G: (-3,3)
- H: (0,1)
<u>2. Vertices of triangle F'G'H':</u>
- F': (-8,-4)
- G': (-12,-12)
- H': (0, -4)
<u>3. Solution:</u>
Look at the coordinates of the point H and H': to transform (0,1) to (0,-4) you can muliply each coordinate by 4 and then change the y-coordinate from 4 to -4. That is<em> a dilation by a scale factor of 4 and a reflection across the x-axis.</em> This is the proof:
- Rule for a dilation by a scale factor of 4: (x,y) → 4(x,y)
(0,1) → 4(0,1) = (0,4)
- Rule for a reflection across the x-axis:{ (x,y) → (x, -y)
(0,4) → (0,-4)
Verfiy the transformations of the other vertices with the same rule:
- Dilation by a scale factor of 4: multiply each coordinate by 4
4(-2,1) → (-8,4)
4(-3,3) → (-12,12)
- Relfection across the x-axis: keep the x-coordinate and negate the y-coordinate
(-8,4) → (-8,-4) ⇒ F'
(-12,12) → (-12,-12) ⇒ G'
Therefore, the three points follow the rules for <em>a dilation by a scale factor of 4 and then a reflection across the x-axis.</em>
Answer:
A
Step-by-step explanation:
The answer is A, the graph raises, crosses at (0, 5) and then remains constant.