Answer:
20-(10 2/9)-(5 1/4)= 4.52777777778 inches decimal or 163/36
Step-by-step explanation:
Simplify the following:
20 - (10 + 2/9) - (5 + 1/4)
Put 10 + 2/9 over the common denominator 9. 10 + 2/9 = (9×10)/9 + 2/9:
20 - (9×10)/9 + 2/9 - (5 + 1/4)
9×10 = 90:
20 - (90/9 + 2/9) - (5 + 1/4)
90/9 + 2/9 = (90 + 2)/9:
20 - (90 + 2)/9 - (5 + 1/4)
90 + 2 = 92:
20 - 92/9 - (5 + 1/4)
Put 5 + 1/4 over the common denominator 4. 5 + 1/4 = (4×5)/4 + 1/4:
20 - 92/9 - (4×5)/4 + 1/4
4×5 = 20:
20 - 92/9 - (20/4 + 1/4)
20/4 + 1/4 = (20 + 1)/4:
20 - 92/9 - (20 + 1)/4
20 + 1 = 21:
20 - 92/9 - 21/4
Put 20 - 92/9 - 21/4 over the common denominator 36. 20 - 92/9 - 21/4 = (36×20)/36 + (4 (-92))/36 + (9 (-21))/36:
(36×20)/36 + (4 (-92))/36 + (9 (-21))/36
| 3 | 6
× | 2 | 0
| 0 | 0
7 | 2 | 0
7 | 2 | 0:
720/36 + (4 (-92))/36 + (9 (-21))/36
4 (-92) = -368:
720/36 + (-368)/36 + (9 (-21))/36
9 (-21) = -189:
720/36 - 368/36 + (-189)/36
720/36 - 368/36 - 189/36 = (720 - 368 - 189)/36:
(720 - 368 - 189)/36
720 - 368 - 189 = 720 - (368 + 189):
(720 - (368 + 189))/36
| 1 | 1 |
| 3 | 6 | 8
+ | 1 | 8 | 9
| 5 | 5 | 7:
(720 - 557)/36
| | 11 |
| 6 | 1 | 10
| 7 | 2 | 0
- | 5 | 5 | 7
| 1 | 6 | 3:
Answer: 163/36
Answer:
I dont understand btw thanx for the points
Step-by-step explanation:
Answer:
A. 27
Step-by-step explanation:
21 x 3 = 63
9 x 3 = 27
let's first off take a peek at those values.
let's say the point with those coordinates is point C, so C is 3/10 of the way from A to B.
meaning, we take the segment AB and cut it in 10 equal pieces, AC takes 3 pieces, and CB takes 7 pieces, namely AC and CB are at a 3:7 ratio.
![\bf ~~~~~~~~~~~~\textit{internal division of a line segment} \\\\\\ A(-4,-8)\qquad B(11,7)\qquad \qquad \stackrel{\textit{ratio from A to B}}{3:7} \\\\\\ \cfrac{A\underline{C}}{\underline{C} B} = \cfrac{3}{7}\implies \cfrac{A}{B} = \cfrac{3}{7}\implies 7A=3B\implies 7(-4,-8)=3(11,7)\\\\[-0.35em] ~\dotfill\\\\ C=\left(\frac{\textit{sum of "x" values}}{\textit{sum of ratios}}\quad ,\quad \frac{\textit{sum of "y" values}}{\textit{sum of ratios}}\right)\\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Binternal%20division%20of%20a%20line%20segment%7D%0A%5C%5C%5C%5C%5C%5C%0AA%28-4%2C-8%29%5Cqquad%20B%2811%2C7%29%5Cqquad%0A%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Bratio%20from%20A%20to%20B%7D%7D%7B3%3A7%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7BA%5Cunderline%7BC%7D%7D%7B%5Cunderline%7BC%7D%20B%7D%20%3D%20%5Ccfrac%7B3%7D%7B7%7D%5Cimplies%20%5Ccfrac%7BA%7D%7BB%7D%20%3D%20%5Ccfrac%7B3%7D%7B7%7D%5Cimplies%207A%3D3B%5Cimplies%207%28-4%2C-8%29%3D3%2811%2C7%29%5C%5C%5C%5C%5B-0.35em%5D%0A~%5Cdotfill%5C%5C%5C%5C%0AC%3D%5Cleft%28%5Cfrac%7B%5Ctextit%7Bsum%20of%20%22x%22%20values%7D%7D%7B%5Ctextit%7Bsum%20of%20ratios%7D%7D%5Cquad%20%2C%5Cquad%20%5Cfrac%7B%5Ctextit%7Bsum%20of%20%22y%22%20values%7D%7D%7B%5Ctextit%7Bsum%20of%20ratios%7D%7D%5Cright%29%5C%5C%5C%5C%5B-0.35em%5D%0A~%5Cdotfill)
![\bf C=\left(\cfrac{(7\cdot -4)+(3\cdot 11)}{3+7}\quad ,\quad \cfrac{(7\cdot -8)+(3\cdot 7)}{3+7}\right) \\\\\\ C=\left( \cfrac{-28+33}{10}~~,~~\cfrac{-56+21}{10} \right)\implies C=\left( \cfrac{5}{10}~~,~~\cfrac{-35}{10} \right) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill C=\left( \frac{1}{2}~,~-\frac{7}{2} \right)~\hfill](https://tex.z-dn.net/?f=%5Cbf%20C%3D%5Cleft%28%5Ccfrac%7B%287%5Ccdot%20-4%29%2B%283%5Ccdot%2011%29%7D%7B3%2B7%7D%5Cquad%20%2C%5Cquad%20%5Ccfrac%7B%287%5Ccdot%20-8%29%2B%283%5Ccdot%207%29%7D%7B3%2B7%7D%5Cright%29%0A%5C%5C%5C%5C%5C%5C%0AC%3D%5Cleft%28%20%5Ccfrac%7B-28%2B33%7D%7B10%7D~~%2C~~%5Ccfrac%7B-56%2B21%7D%7B10%7D%20%5Cright%29%5Cimplies%20C%3D%5Cleft%28%20%5Ccfrac%7B5%7D%7B10%7D~~%2C~~%5Ccfrac%7B-35%7D%7B10%7D%20%5Cright%29%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A~%5Chfill%20C%3D%5Cleft%28%20%5Cfrac%7B1%7D%7B2%7D~%2C~-%5Cfrac%7B7%7D%7B2%7D%20%5Cright%29~%5Chfill)
1.15 I think in an equation form I’m not sure though