Answer:
it's
2.08
Step-by-step explanation:
<em><u>
</u></em>
<em><u>so</u></em><em><u> </u></em><em><u>I</u></em><em><u> </u></em><em><u>think</u></em><em><u> </u></em><em><u>think</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>help</u></em><em><u>f</u></em><em><u>u</u></em><em><u>l</u></em><em><u> </u></em><em><u>to</u></em><em><u> </u></em><em><u>u</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em>2</em><em>.</em><em>0</em><em>8</em>
To put an equation into (x+c)^2, we need to see if the trinomial is a perfect square.
General form of a trinomial: ax^2+bx+c
If c is a perfect square, for example (1)^2=1, 2^2=4, that's a good indicator that it's a perfect square trinomial.
Here, it is, because 1 is a perfect square.
To ensure that it's a perfect square trinomial, let's look at b, which in this case is 2.
It has to be double what c is.
2 is the double of 1, therefore this is a perfect square trinomial.
Knowing this, we can easily put it into the form (x+c)^2.
And the answer is: (x+1)^2.
To do it the long way:
x^2+2x+1
Find 2 numbers that add to 2 and multiply to 1.
They are both 1.
x^2+x+x+1
x(x+1)+1(x+1)
Gather like terms
(x+1)(x+1)
or (x+1)^2.
Answer:
ummm I think this is obvious
Step-by-step explanation:
2 circles in each group, shade in one group of 2.
Answer:
67.91
Step-by-step explanation: