Answer:
see below PLEASE GIVE BRAINLIEST
Step-by-step explanation:
18,000 - 6000 = 12,000
12,000 ÷ 450 = 26.66 = 26 days 16 hours
Answer:

Step-by-step explanation:
Given the function

We can find the inverse function by exchanging x and y, and then solve for y.

Replace x with y.

square both sides


Hence,

Answer:
56
Step-by-step explanation:
Answer:
The store can be 90% confident that the interval from 0.293 to 0.355 captures the proportion of all customers of this store who have moved in the past 5 years.
Step-by-step explanation:
The confidence interval provides a range of values (lower and upper bound) based on a certain confidence level at which the true proportion or mean value of a given sample mean or proportion exists. In the scenario above, the confidence level is 90% and the confidence interval is 0.293 to 0.355. Hence, we can be 90% confident that the true proportion of all customers of the store who have moved within the last five years exists within this interval.
Assume 0 < <em>x</em>/2 < <em>π</em>/2. Then
tan²(<em>x</em>/2) + 1 = sec²(<em>x</em>/2) ===> sec(<em>x</em>/2) = √(1 - tan²(<em>x</em>/2))
===> cos(<em>x</em>/2) = 1/√(1 - tan²(<em>x</em>/2))
===> cos(<em>x</em>/2) = 1/√(1 - <em>t</em> ²)
We also know that
sin²(<em>x</em>/2) + cos²(<em>x</em>/2) = 1 ===> sin(<em>x</em>/2) = √(1 - cos²(<em>x</em>/2))
Recall the double angle identities:
cos(<em>x</em>) = 2 cos²(<em>x</em>/2) - 1
sin(<em>x</em>) = 2 sin(<em>x</em>/2) cos(<em>x</em>/2)
Then
cos(<em>x</em>) = 2/(1 - <em>t</em> ²) - 1 = (1 + <em>t</em> ²)/(1 - <em>t</em> ²)
sin(<em>x</em>) = 2 √(1 - 1/(1 - <em>t</em> ²)) / √(1 - <em>t</em> ²) = 2<em>t</em>/(1 - <em>t</em> ²)