Answer:
(x+1)(2x+5)
Step-by-step explanation:
f(x) = 2x² + 7x + 5
Factor the expression by grouping. First, the expression needs to be rewritten as 2x²+ax+bx+5. To find a and b, set up a system to be solved.
a+b=7
ab=2×5=10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 10.
1,10
2,5
Calculate the sum for each pair.
1+10=11
2+5=7
The solution is the pair that gives sum 7.
a=2
b=5
2x²+7x+5 as (2x²+2x)+(5x+5).
(2x²+2x)+(5x+5)
Factor out 2x in the first and 5 in the second group.
2x(x+1)+5(x+1)
Factor out common term x+1 by using distributive property.
(x+1)(2x+5)
5 5/12
(2+3) 1/6 + 1/4=
5 5/12
Fraction adding: Okay, so if you have two fractions with the same denominator like 2/3 and 1/3 then they are easily added. Just add the numerators together and then keep the denominator. Like this: 2/3 + 1/3 = 3/3 or 1 whole. Here is something for fractions with unlike denominators.