Answer:
416666666/100000000
Step-by-step explanation:
To write 4.16666666 as a fraction you have to write 4.16666666 as numerator and put 1 as the denominator. Now you multiply numerator and denominator by 10 as long as you get in numerator the whole number.
Cut each sandwich into pieces of thirds
4 sandwiches x 3 pieces = 12 total pieces
--------------------
12 / 6 = 2
Everybody would get 2 pieces
Answer:
Graph C is the answer.
Step-by-step explanation:
From the graphs attached,
Graph A
Given graph represents a cubic function.
Graph B
This graph represents a piecewise function.
Graph C
This graph represents an exponential function.
Graph D
Given graph represents a quadratic function.
Graph C is the answer.
Answer:

Step-by-step explanation:
You know how subtraction is the <em>opposite of addition </em>and division is the <em>opposite of multiplication</em>? A logarithm is the <em>opposite of an exponent</em>. You know how you can rewrite the equation 3 + 2 = 5 as 5 - 3 = 2, or the equation 3 × 2 = 6 as 6 ÷ 3 = 2? This is really useful when one of those numbers on the left is unknown. 3 + _ = 8 can be rewritten as 8 - 3 = _, 4 × _ = 12 can be rewritten as 12 ÷ 4 = _. We get all our knowns on one side and our unknown by itself on the other, and the rest is computation.
We know that
; as a logarithm, the <em>exponent</em> gets moved to its own side of the equation, and we write the equation like this:
, which you read as "the logarithm base 3 of 9 is 2." You could also read it as "the power you need to raise 3 to to get 9 is 2."
One historical quirk: because we use the decimal system, it's assumed that an expression like
uses <em>base 10</em>, and you'd interpret it as "What power do I raise 10 to to get 1000?"
The expression
means "the power you need to raise 10 to to get 100 is x," or, rearranging: "10 to the x is equal to 100," which in symbols is
.
(If we wanted to, we could also solve this:
, so
)