The answer is 175 mL
please let me know if am wrong.
The dollar amount for the return on stocks is $3375 and the dollar amount for the return on bonds is $1125.
Two equations can be derived from the question:
s + b = $90,000 equation 1
0.1s + 0.02b = $4500 equation two
$4500 = 0.05 x $90,000
The above equation is a simultaneous equation and it would be solved using the elimination method.
The following steps would be take to determine the value of b
Multiply equation 1 by 0.1
0.1s + 0.1b = 9000 equation 3
Subtract equation 2 from 3
0.08b = $4500
b = $56,250
The following step would be taken to determine the value of s
Substitute for b in equation 1
s + $56,250 = $90,000
$90,000 - $56,250 = s
s = $33,750
Dollar amount for the return on stocks = $33,750 x 0.1 = $3375
Dollar amount for the return on bonds = $56,250 x 0,02 = $1125
To learn more about simultaneous equations, please check: brainly.com/question/23589883?referrer=searchResults
<em>Answer:</em>
<em>{</em><em>c,</em><em>d,</em><em>e}</em>
<em>Solution</em><em>,</em>
<em>P </em><em>n </em><em>Q </em><em>n </em><em>R</em>
<em>=</em><em>{</em><em>a,</em><em>b,</em><em>c,</em><em>d,</em><em>e}</em><em> </em><em>n </em><em>{</em><em> </em><em>a,</em><em>c,</em><em>e,</em><em>d,</em><em>t}</em><em> </em><em>n </em><em>{</em><em>t,</em><em>d,</em><em>c,</em><em>b,</em><em>e}</em>
<em>=</em><em>{</em><em>c,</em><em>d,</em><em>e}</em>
<em>In </em><em>case </em><em>of </em><em>intersection</em><em>,</em>
<em>we </em><em>have </em><em>to </em><em>list </em><em>the </em><em>common </em><em>elements </em><em>which</em><em> </em><em>are </em><em>present </em><em>in </em><em>all </em><em>sets.</em>
<em>Hope </em><em>it</em><em> helps</em>
<em>Good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em> </em>
<h3>First expression:</h3>
Factor 44 out of 44r+352.
44(r+8)
<h3>
Second expression:</h3>
Factor −16 out of 448−16b+112c.
−16(b−7c−28)
plz mark me as brainliest :)
10-2/3=9 1/3 if you estimate that it would be 9
next it is 3 - 1/8= 2 7/8 estimate it would be 3
so 9 x 3= 27